www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Normalverteilung
Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:58 So 05.02.2012
Autor: chesn

Aufgabe
Sei [mm] X\sim N(\mu,\sigma^2). [/mm] Bestimmen Sie [mm] P(-c*\sigma\le X-\mu \le c*\sigma) [/mm] für c=1,2,3.

Hallo! Wäre nett wenn mir hier jemand schnell weiter helfen würde:

Dichte der Normalverteilung:

[mm] f(t)=\bruch{1}{\wurzel{2\pi\sigma}}*exp(-\bruch{(x-\mu)^2}{2\sigma^2}) [/mm]

Die Normalverteilung ist ja eine stetige Verteilung, also kann ich (nach Skript) setzen:

[mm] P(a\le X\le b)=\integral_{a}^{b}f(t)dt [/mm]

Mein Problem ist jetzt das [mm] \mu [/mm] in [mm] P(-c*\sigma\le X-\mu \le c*\sigma). [/mm]

Wie wirkt sich das auf die Formel aus? Da steige ich leider nicht ganz durch.
Würde ich dem [mm] \mu [/mm] keine Beachtung schenken, bekäme ich:

[mm] P(-c*\sigma\le X\le c*\sigma)=\integral_{-c*\sigma}^{c*\sigma}\bruch{1}{\wurzel{2\pi\sigma}}*exp(-\bruch{(t-\mu)^2}{2\sigma^2})dt [/mm]

Aber wie gesagt: Es heisst ja [mm] X-\mu [/mm] und damit kann ich gerade nicht viel anfangen.

Danke schonmal! :)

Gruß
chesn

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 So 05.02.2012
Autor: luis52


  

> Mein Problem ist jetzt das [mm]\mu[/mm] in [mm]P(-c*\sigma\le X-\mu \le c*\sigma).[/mm]

Moin, *wo* ist das Problem?

[mm]P(-c*\sigma\le X-\mu \le c*\sigma)=P(\mu-c*\sigma\le X\le \mu+c*\sigma)[/mm]

vg Luis


Bezug
                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 So 05.02.2012
Autor: chesn

Diese Umformung wohl.. das hat mich reichlich verwirrt.

Aber danke für deine Antwort, so sollte es kein Problem mehr sein. :)

Gruß
chesn

Bezug
        
Bezug
Normalverteilung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:30 Di 07.02.2012
Autor: chesn

Hallo! Habe das Ganze jetzt wie folgt gemacht:

$ [mm] P(\mu-c\cdot{}\sigma\le X\le \mu+c\cdot{}\sigma)=\integral_{\mu-c\cdot{}\sigma}^{\mu+c\cdot{}\sigma}\bruch{1}{\wurzel{2\pi\sigma}}\cdot{}exp(-\bruch{(t-\mu)^2}{2\sigma^2})dt [/mm] $

$ [mm] =\integral_{-\infty}^{\mu+c\cdot{}\sigma}\bruch{1}{\wurzel{2\pi\sigma}}\cdot{}exp(-\bruch{(t-\mu)^2}{2\sigma^2})dt-\integral_{-\infty}^{\mu-c\cdot{}\sigma}\bruch{1}{\wurzel{2\pi\sigma}}\cdot{}exp(-\bruch{(t-\mu)^2}{2\sigma^2})dt [/mm] \ \ \ [mm] (\* [/mm] ) $

Jetzt steht im Skript, dass ich die Verteilungsfunktion der Standartnormalverteilung (tabelliert) benutzen kann mit:

[mm] \integral_{-\infty}^{a}\bruch{1}{\wurzel{2\pi\sigma}}\cdot{}exp(-\bruch{(t-\mu)^2}{2\sigma^2})dt=\Phi(\bruch{a-\mu}{\sigma}) [/mm]

Also folgt für $ [mm] (\* [/mm] ) $:

[mm] =\Phi(\bruch{\mu+c*\sigma -\mu}{\sigma})-\Phi(\bruch{\mu-c*\sigma -\mu}{\sigma})=\Phi(c)-\Phi(-c)=2*\Phi(c)-1 [/mm]

Passt das alles so?
Wäre super wenn jemand sagen könnte, ob das so richtig ist..

Vielen Dank schonmal!

Gruß
chesn

Bezug
                
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Di 07.02.2012
Autor: Gonozal_IX

Hiho,

> Jetzt steht im Skript, dass ich die Verteilungsfunktion der
> Standartnormalverteilung (tabelliert) benutzen kann mit:
>  
> [mm]\integral_{-\infty}^{a}\bruch{1}{\wurzel{2\pi\sigma}}\cdot{}exp(-\bruch{(t-\mu)^2}{2\sigma^2})dt=\Phi(\bruch{a-\mu}{\sigma})[/mm]

das brauchst du nicht, wenn du gleich normierst (entgegen dem Tip von luis).

Beachte:

$ [mm] P(-c\cdot{}\sigma\le X-\mu \le c\cdot{}\sigma) [/mm]  = P( -c [mm] \le \bruch{X - \mu}{\sigma} \le [/mm] c) $

Nun ist [mm] $\bruch{X - \mu}{\sigma} \sim \mathcal{N}(0,1)$ [/mm] und du kannst direkt ablesen:

$= [mm] \Phi(c) [/mm] - [mm] \Phi(-c)$ [/mm]

Und damit hast du sofort deine Lösung :-)

MFG,
Gono.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de