www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Normalverteilung Fehler
Normalverteilung Fehler < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung Fehler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:49 Do 19.12.2013
Autor: MK234

Hallo,
es geht um zwei Normalverteilungen und deren Alpha- und Betafehler bzw. Fehler 1.Art und Fehler 2. Art.
Angenommen ich habe zwei normalverteilte Dichtefunktionen, welche sich schneiden. Die Funktion mit dem kleineren Erwartungswert beschreibt die Nullhypothese und die Funktion mit dem größeren Erwartungswert die Alternativhypothese. Der Alpha-Fehler wäre dann das Integral der 1. Funktion ab einem kritischen Wert bis unendlich und der Beta-Fehler das Integral der 2. Funktion von Minus-unendlich bis zum kritischen Wert. Wenn ich nun versuche die Summe des Alpha- und Beta-Fehlers zu minimieren, dann müßte doch der kritische Wert derart verändert werden, dass er sich beim Schnittpunkt der beiden Funktionen befindet, oder?

Kann dieser Ansatz stimmen?
(Kritische Wert ist die Grenze zwischen Annahme- und Ablehnungsbereich der Nullhypothese)

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.statistik-forum.de/allgemeine-fragen-f5/summe-von-alpha-und-beta-fehler-minimieren-t3692.html]

        
Bezug
Normalverteilung Fehler: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Do 19.12.2013
Autor: Al-Chwarizmi


> Hallo,
>  es geht um zwei Normalverteilungen und deren Alpha- und
> Betafehler bzw. Fehler 1.Art und Fehler 2. Art.
>  Angenommen ich habe zwei normalverteilte Dichtefunktionen,
> welche sich schneiden. Die Funktion mit dem kleineren
> Erwartungswert beschreibt die Nullhypothese und die
> Funktion mit dem größeren Erwartungswert die
> Alternativhypothese. Der Alpha-Fehler wäre dann das
> Integral der 1. Funktion ab einem kritischen Wert bis
> unendlich und der Beta-Fehler das Integral der 2. Funktion
> von Minus-unendlich bis zum kritischen Wert. Wenn ich nun
> versuche die Summe des Alpha- und Beta-Fehlers zu
> minimieren, dann müßte doch der kritische Wert derart
> verändert werden, dass er sich beim Schnittpunkt der
> beiden Funktionen befindet, oder?
>
> Kann dieser Ansatz stimmen?


Hallo MK234

          [willkommenmr]

ich habe mir dazu eine Skizze gemacht und halte deine
Annahme für plausibel, jedenfalls dann, wenn [mm] H_0 [/mm] und [mm] H_1 [/mm]
genügend weit auseinander liegen, dass der abfallende
Teil der [mm] H_0 [/mm] - Kurve sich mit dem aufsteigenden Teil der
[mm] H_1 [/mm] - Kurve kreuzt. Die Fläche, welche die Summe der
beiden Fehlerwahrscheinlichkeiten darstellt, nimmt dann
stets zu, wenn man den kritischen Wert von der Stelle
des Schnittpunktes wegbewegt.

LG ,   Al-Chw.

Bezug
                
Bezug
Normalverteilung Fehler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 Do 19.12.2013
Autor: MK234

Danke für die bestätigende Antwort. Wenn sich nun aber die beiden Dichtefunktionen an zwei Stellen schneiden, weil sie sich in der Varianz unterscheiden, also eine Funktion direkt auf der anderen liegt, wie kann man dann die Summe der beiden Fehler Alpha und Beta minimieren? Könnte das dann vielleicht über die Ableitung von Alpha+Beta funktionieren, wenn man also die Nullstellen sucht?

Bezug
                        
Bezug
Normalverteilung Fehler: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Do 19.12.2013
Autor: Al-Chwarizmi


> Danke für die bestätigende Antwort. Wenn sich nun aber
> die beiden Dichtefunktionen an zwei Stellen schneiden, weil
> sie sich in der Varianz unterscheiden, also eine Funktion
> direkt auf der anderen liegt, wie kann man dann die Summe
> der beiden Fehler Alpha und Beta minimieren? Könnte das
> dann vielleicht über die Ableitung von Alpha+Beta
> funktionieren, wenn man also die Nullstellen sucht?

Hallo,

ich kann zwar nur so ungefähr vermuten, was du
meinst. Falls es aber möglich ist, die Summe der
Wahrscheinlichkeiten für Fehler erster und zweiter
Art formal hinzuschreiben und abzuleiten, steht
natürlich der normale Weg der Bearbeitung eines
Extremalproblems mittels Ableitungen offen !

LG ,   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de