www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Normen und Abbildungen
Normen und Abbildungen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normen und Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Do 26.05.2011
Autor: Vio_math

Aufgabe
Sei W = [mm] \{f:[0,2\pi]->\IR|f(x)=a*cos(x)+b*sin(x),a,b\el\ \IR)\subset\ C^1(intervall(0,2\pi))\} [/mm]
versehen mit der Norm [mm] \parallel [/mm] f [mm] \parallel:= \bruch{1}{\wurzel[]{\pi}}*(\wurzel[2]{\integral_{0}^{2pi}{f(x)^{2} dx}}) [/mm]
[mm] \(die [/mm] Normaxiome brauchen nicht gezeigt zu [mm] werden\). [/mm]

a) Zeige, dass [mm] \Phi:W->\IR^2\ [/mm] (a*cos+b*sin) (restriktiert auf [mm] (0,2\pi)) [/mm] ->(a,b)
ein Isomorphismus ist, und dass für alle f [mm] \inW [/mm] gilt [mm] \parallel\Phi(f)\parallel_2=\parallel [/mm] f [mm] \parallel [/mm]

b) Zeige, dass die Ableitung A:W->W,f->f'
eine stetige lineare Abbildung ist, und dass gilt
[mm] \Phi\circ A\circ \Phi^{-1}* (a;b)=\pmat{ 0 & 1 \\ -1 & 0 }*(a;b). [/mm]
c) Zeige direkt und mit Hilfe von b), dass [mm] A^4=A \circ A\circ A\circ A=Id_W. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hey Leute,
ich habe Probleme mit je den 2. Teilaufgaben von a)-c). Wie sehen denn [mm] \Phi\circ [/mm] A [mm] \circ\Phi [/mm] ^-1 und
[mm] \Phi(f) [/mm] aus? Und inwieweit weise ich mithilfe von b) die Aussage in c nach?
Vio

        
Bezug
Normen und Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:08 Fr 27.05.2011
Autor: Blech

Hi,

> ich habe Probleme mit je den 2. Teilaufgaben von a)-c). Wie sehen denn $ [mm] \Phi\circ [/mm] $ A $ [mm] \circ\Phi [/mm] $ ^-1 und

$ [mm] \Phi(f) [/mm] $ aus?

[mm] $\Phi$ [/mm] ist definiert durch

$ [mm] \Phi:\ W\to\IR^2;\quad (a*\cos(x)+b*\sin(x))\Big|_{(0,2\pi)} \mapsto \vektor{a\\b}$ [/mm]

Also ist [mm] $\Phi(f)$ [/mm] folgerichtig ein Vektor aus dem [mm] $\IR^2$. [/mm] Ist $f$ von der Gestalt

[mm] $(a*\cos(x)+b*\sin(x))\Big|_{(0,2\pi)}$? [/mm]

Ja? Also weißt Du jetzt auch, welcher Vektor bei [mm] $\Phi(f)$ [/mm] rauskommt.


Für
[mm] $(\Phi\circ A\circ \Phi^{-1})(a,b)$ [/mm]
gehst Du mal in der Reihenfolge, in der die 3 Operationen ausgeführt werden durch, was jede als input und was als output hat.


> Und inwieweit weise ich mithilfe von b) die Aussage in c nach?

Was ist
[mm] $(\Phi\circ A\circ \Phi^{-1})^4$? [/mm]

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de