www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Nullfolge
Nullfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 So 21.05.2006
Autor: nathenatiker

Aufgabe
Sei [mm] a_{m} [/mm] := [mm] \begin{cases} \bruch{1}{m}, & \mbox{für } m \mbox{=2k} \\ \bruch{1}{1+2m}, & \mbox{für } m \mbox{=2k+1} \end{cases} [/mm]
für alle k [mm] \in \IN. [/mm]

1) Sei a [mm] \in \IR. [/mm] Zeigen sie: Gilt 0 [mm] \le [/mm] a < [mm] a_{m} [/mm] für alle m [mm] \in \IN., [/mm] dann ist a=0
2) Zeigen, sie [mm] a_{m} [/mm] ist eine Nullfolge.

Hallo,

bei aufgabe 1) habe ich zuerst eine Fallunterscheidung gemacht,
für m gerade gilt: 0 [mm] \le [/mm] a < [mm] \bruch{1}{m}. [/mm]
und für m ungerade gilt: 0 [mm] \le [/mm] a < [mm] \bruch{1}{1+2m}. [/mm]

Mein Problem ist jetzt, wie ich weitermachen soll. Also eigentlich ist es ja offensichtlich, dass [mm] \bruch{1}{m} [/mm] und [mm] \bruch{1}{1+2m} [/mm] Nullfolgen sind. Reicht es dann, wenn ich dementsprechend argumentiere?Oder kann man dass auch irgendwie zeigen?
Nächtes Problem wäre dann Aufgabe 2. Wenn man 1) gezeigt hat, kann man doch automatisch 2 daraus schlussfolgern??????
oder habe ich irgendwo einen Denkfehler drin?
Bitte helft mir.

MFG
NAthenatiker

        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 So 21.05.2006
Autor: FrankM

Hallo,

leider bin ich mir nicht ganz sicher, was du mit der aufgeschriebenen Reihe meinst. Ich interpretiere sie so:
[mm] a_n=\begin{cases} \bruch{1}{2n}, & \mbox{für } n \mbox{gerade} \\ \bruch{1}{4n+2}, & \mbox{für } n \mbox{ ungerade} \end{cases} [/mm]
zu 1) Annahme a>0, also a [mm] \neq [/mm] 0, also gibt es ein [mm] m_0 [/mm] mit [mm] \bruch{1}{m_0}
zu 2) nein du kannst aus 1) noch nicht 2) folgern, z.B. gilt 1) auch für die Folge:
[mm] a_n=\begin{cases} 0, & \mbox{für } n=1 \\ 1, & \mbox{sonst } \end{cases}. [/mm]
Der Unterschied zwischen 1) und 2) ist, dass in 1) nur ein Folgenglied gefunden werden muss, dass beliebig klein wird, während du bei 2) zeigen musst, dass die Folge ab einem  Glied beliebig klein ist.
Aber du weisst, dass alle [mm] a_n [/mm] positiv sind, und es gilt für alle n [mm] a_n\leq\bruch{1}{n}, [/mm] also ist [mm] a_n [/mm] eine Nullfolge.

Gruß
Frank

Bezug
                
Bezug
Nullfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Mo 22.05.2006
Autor: nathenatiker

Hallo,

Also, die Aufgenstellung mit Aufgabe ist erstmal korrekt aufgschrieben,

die Struktur der Aufgabe ist mir jetzt auch klar, nur der Beweis von 1) von FrankM müsste meiner Meinung nach falsch sein,oder? er schließt am Ende auf $ [mm] a_{m_0}
falls ich falsch liege, korrigiert mich, aber ich habe immernoch keinen schlüssigen Beweis für Aufgabe 1 hinbekommen.

MFG

Nathenatiker

Bezug
                        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mo 22.05.2006
Autor: FrankM

Hallo,

genau, du hast am Ende gezeigt, dass [mm] a_{m_0}
Gruß
Frank

Bezug
                                
Bezug
Nullfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 Mo 22.05.2006
Autor: nathenatiker

HAllo,

aber wenn man einen Beweis durch Widerspruch führt, dann wiederlegt man doch während seines Beweis die (falsche) Annahme. Die sagst jetzt, dass a>0 sein soll, und während deines Beweises willst du doch diese Annahme wiederlegen. am Ende komst du auf die Aussage, dass $ [mm] a_{m_0}
hab ich da jetzt was grundlegendes falsch verstanden???????????
oder steh ich hier nur völlig aufm Schlauch, aber eigentlich kann dieser beweis nicht richtig sein.

ich hoffe es kann mal jemand anderes dazu etwas sagen.

MFG
nathenatiker

Bezug
                                        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 Mo 22.05.2006
Autor: Micha

Hallo!
> HAllo,
>  
> aber wenn man einen Beweis durch Widerspruch führt, dann
> wiederlegt man doch während seines Beweis die (falsche)
> Annahme. Die sagst jetzt, dass a>0 sein soll, und während
> deines Beweises willst du doch diese Annahme wiederlegen.
> am Ende komst du auf die Aussage, dass [mm]a_{m_0}
> damit wiederlegst du doch deine (falsche) Annahme nicht,
> oder?????
>  
> hab ich da jetzt was grundlegendes falsch
> verstanden???????????
>  oder steh ich hier nur völlig aufm Schlauch, aber
> eigentlich kann dieser beweis nicht richtig sein.
>  
> ich hoffe es kann mal jemand anderes dazu etwas sagen.

Das ist das klassische Beweisprinzip des indirekten Beweises. Angenommen man will eine Behauptung zeigen, hier z.B. das gilt
wenn $0 [mm] \le [/mm] a [mm] \le a_m$ [/mm] dann folgt $a=0$.

Dann kann man das tun, indem man annimmt, 0<a. Also man lässt die Folgerung (hier a=0) falsch werden, man nimmt aber die gleichen Voraussetzungen an. Im Verlaufe des Beweises kommt aber heraus, dass dann ein [mm] $m_0$ [/mm] existiert, sodass
[mm] $a_m_0 [/mm] < a$. Das verletzt aber die Voraussetzungen. Mit anderen Worten, man zeigt, dass es unter den Voraussetzungen nicht passieren kann, dass der gegenteilige Fall eintritt, ohne dass die Voraussetzungen verletzt werden.

Ist es jetzt etwas verständlicher geworden?

Gruß Micha ;-)

Bezug
        
Bezug
Nullfolge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:54 Di 23.05.2006
Autor: nathenatiker

Hallo,

ok danke für die Antworten,
hab mich irgendwie zusehr auf meiner Meinnung festgesessen,
nächste mal probier ich das ganze mal ein bisschen neutraler
anzugehen.

gruß
n

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de