www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Nullfolge
Nullfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 So 08.11.2009
Autor: Nelly12345

Aufgabe
Bestimmen Sie für die nachstehenden Nullfolgen [mm] (a_{n}) [/mm] zu vorgegebenem [mm] \varepsilon [/mm] > 0 jeweils ein passendes [mm] n(\varepsilon) [/mm] derart, dass [mm] |a_{n}| [/mm] < [mm] \varepsilon [/mm] für alle n [mm] \ge n(\varepsilon) [/mm] gilt. Dabei ist es nicht nötig, [mm] n(\varepsilon) [/mm] möglichst klein zu wählen. Schätzen Sie die [mm] a_{n} [/mm] möglichst durch einfache Ausdrücke grob ab.

(b) [mm] a_{n} [/mm] = [mm] \bruch{1}{\wurzel{n^2 + a^2}} [/mm]

Ich geh schon die ganze Zeit meine Scripte durch, hab aber leider absolut keine Ahnung was da von mir verlangt wird.
Ich hab mir sagen lassen, dass man  [mm] a_{n} [/mm] einfach < [mm] \varepsilon [/mm] setzten muss und das danach einfach auflösen soll


vor allem aber verstehe ich die Beziehung zwischen [mm] n(\varepsilon) [/mm] und [mm] (a_{n}) [/mm] nicht?

[mm] (a_{n}) [/mm] ist ja quasi die Funktion a von n oder?

[mm] n(\varepsilon) [/mm] ist dann ein bestimmtes n das was genau für Eigenschaften hat?

        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 So 08.11.2009
Autor: angela.h.b.


> Bestimmen Sie für die nachstehenden Nullfolgen [mm](a_{n})[/mm] zu
> vorgegebenem [mm]\varepsilon[/mm] > 0 jeweils ein passendes
> [mm]n(\varepsilon)[/mm] derart, dass [mm]|a_{n}|[/mm] < [mm]\varepsilon[/mm] für alle
> n [mm]\ge n(\varepsilon)[/mm] gilt. Dabei ist es nicht nötig,
> [mm]n(\varepsilon)[/mm] möglichst klein zu wählen. Schätzen Sie
> die [mm]a_{n}[/mm] möglichst durch einfache Ausdrücke grob ab.
>  
> (b) [mm]a_{n}[/mm] = [mm]\bruch{1}{\wurzel{n^2 + a^2}}[/mm]
>  Ich geh schon
> die ganze Zeit meine Scripte durch, hab aber leider absolut
> keine Ahnung was da von mir verlangt wird.
> Ich hab mir sagen lassen, dass man  [mm]a_{n}[/mm] einfach <
> [mm]\varepsilon[/mm] setzten muss und das danach einfach auflösen
> soll
>  
>
> vor allem aber verstehe ich die Beziehung zwischen
> [mm]n(\varepsilon)[/mm] und [mm](a_{n})[/mm] nicht?
>  
> [mm](a_{n})[/mm] ist ja quasi die Funktion a von n oder?
>
> [mm]n(\varepsilon)[/mm] ist dann ein bestimmtes n das was genau für
> Eigenschaften hat?

Hallo,

das a ist hier eine feste Zahl.

Die Glieder Deiner Folge sind

[mm]a_{1}[/mm] = [mm] \bruch{1}{\wurzel{1^2 + a^2}} [/mm]
[mm]a_{2}[/mm] [mm] =\bruch{1}{\wurzel{2^2 + a^2}} [/mm]
[mm]a_{3}[/mm] = [mm] \bruch{1}{\wurzel{3^2 + a^2}} [/mm]
[mm] \vdots [/mm]

Wir konkretisieren die Aufgabe jetzt mal:

sag' mir zu [mm] \varepsilon:= \bruch{1}{70} [/mm]  ein N, so daß für alle n>N gilt:

[mm]|a_{n}|[/mm] [mm] =\bruch{1}{\wurzel{n^2 + a^2}} [/mm] < [mm] \bruch{1}{70} [/mm] .

Ich löse die Aufgabe jetzt mal selbst - es gibt hier nicht nur eine mögliche Lösung:

[mm] |a_{n}|=\bruch{1}{\wurzel{n^2 + a^2}} [/mm] < [mm] \bruch{1}{\wurzel{n^2 }}= \bruch{1}{n}. [/mm]

Und jetzt suche ich n so, daß [mm] \bruch{1}{n} [/mm] < [mm] \bruch{1}{70}. [/mm]

Ergebnis  n> 70.  Na gut, dann kann ich ja N:= 2*70 nehmen.

Nun gucken wir, ob ich's richtig gemacht habe:

Sei [mm] \varepsilon:= \bruch{1}{70} [/mm] und N:= 2*70.

dann ist für alle n>2*70    [mm] \qquad[/mm]    [mm]|a_{n}|[/mm] = [mm] \bruch{1}{\wurzel{n^2 + a^2}} [/mm] < [mm] \bruch{1}{\wurzel{n^2 }}= \bruch{1}{n} <\bruch{1}{2*70} [/mm] < [mm] \bruch{1}{70}=\varepsilon. [/mm]


Das sollst Du jetzt nicht für eine konkrete zahl durchführen, sondern allgemein für [mm] \varepsilon [/mm] >0. Dein N, das, was die Aufgabe [mm] n(\varepsilon [/mm] nennt, wird hierbei vermutlich von [mm] \varepsilon [/mm] abhängen.

Gruß v. Angela








Bezug
                
Bezug
Nullfolge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:16 So 08.11.2009
Autor: Nelly12345

und was heißt dieses [mm] ?

ansonsten vielen Dank für die Antwort. Wird bestimmt gleich Sinn ergeben. Danke!

Bezug
                        
Bezug
Nullfolge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 08.11.2009
Autor: angela.h.b.


> und was heißt dieses [mm]?

Nix!
Das ist Schmutz, der beim Zitieren entstandne ist, ich geh gleich mal putzen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de