www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Nullfolge
Nullfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullfolge: Beweis
Status: (Frage) beantwortet Status 
Datum: 18:37 So 15.12.2013
Autor: Alex1993

Hey ihr
für eine Aufgabe soll ich beweisen, dass [mm] \wurzel{n+2} [/mm] - [mm] \wurzel{n} [/mm] eine Nullfolge ist
mein Ansatz
es existiert ein N [mm] \in \IN [/mm] mit n [mm] \ge [/mm] N mit
| [mm] \wurzel{n+2} [/mm] - [mm] \wurzel{n} [/mm] - 0 | = [mm] \wurzel{n+2} [/mm] - [mm] \wurzel{n} \le \wurzel{n+2} \le [/mm] n+2 [mm] \le [/mm] .... [mm] \le \epsilon [/mm]

stimmt der Ansatz? und wie schätze ich weiter ab?

        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 So 15.12.2013
Autor: DieAcht


> Hey ihr
>  für eine Aufgabe soll ich beweisen, dass [mm]\wurzel{n+2}[/mm] -
> [mm]\wurzel{n}[/mm] eine Nullfolge ist
>  mein Ansatz
> es existiert ein N [mm]\in \IN[/mm] mit n [mm]\ge[/mm] N mit
> | [mm]\wurzel{n+2}[/mm] - [mm]\wurzel{n}[/mm] - 0 | = [mm]\wurzel{n+2}[/mm] -
> [mm]\wurzel{n} \le \wurzel{n+2} \le[/mm] n+2 [mm]\le[/mm] .... [mm]\le \epsilon[/mm]
>  
> stimmt der Ansatz? und wie schätze ich weiter ab?

Tipps:

1. [mm] \sqrt{n+2}-\sqrt{n}=\sqrt{n+2}-\sqrt{n}*\frac{\sqrt{n+2}+\sqrt{n}}{\sqrt{n+2}+\sqrt{n}}=? [/mm]
2. Binomische Formel

Du musst nun ein [mm] N\in\IN [/mm] angeben, sodass für alle [mm] $n\ge [/mm] N$ [mm] |a_n|<\epsilon [/mm] gilt.

DieAcht

Bezug
                
Bezug
Nullfolge: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:55 So 15.12.2013
Autor: Alex1993

und wie finde ich dies?

Bezug
        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 So 15.12.2013
Autor: Teufel

Hi!

Das ist leider zu grob abgeschätzt. Erweiter lieber mal mit [mm] \sqrt{n+2}+\sqrt{n}, [/mm] also [mm] $\left|\sqrt{n+2}-\sqrt{n}\right|=\left|\frac{(\sqrt{n+2}-\sqrt{n})(\sqrt{n+2}+\sqrt{n})}{\sqrt{n+2}+\sqrt{n}}\right|=\ldots$ [/mm]

Das kannst du dann noch nach oben abschätzen.

Bezug
                
Bezug
Nullfolge: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:48 So 15.12.2013
Autor: Alex1993

danke
dann erhalte ich:
[mm] \frac{2}{\wurzel{n+2}+\wurzel{n}} \le \frac{2}{wurzel{n}} \le \frac{2}{n} \le \frac{2}{N} \le \frac{2}{\frac{2}{\epsilon}} [/mm] = [mm] \epsilon [/mm]
stimmts so?

Bezug
                        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 So 15.12.2013
Autor: reverend

Hallo Alex,

> danke
>  dann erhalte ich:
>  [mm]\frac{2}{\wurzel{n+2}+\wurzel{n}} \le \frac{2}{wurzel{n}} \red{\le} \frac{2}{n} \le \frac{2}{N} \le \frac{2}{\frac{2}{\epsilon}}[/mm]
> = [mm]\epsilon[/mm]
>  stimmts so?  

Nein, die zweite Stufe der Abschätzung stimmt nicht - rechne mal nach.

Besser:
[mm] \bruch{2}{\wurzel{n+2}+\wurzel{n}}\le\bruch{2}{2\wurzel{n}}=\bruch{1}{\wurzel{n}}\le\bruch{1}{\wurzel{N}}\le\cdots [/mm]

Grüße
reverend

Bezug
                                
Bezug
Nullfolge: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:58 So 15.12.2013
Autor: Alex1993

du hast recht
also dann:
[mm] \frac{1}{\wurzel{N}} \le \frac{1}{\wurzel{\frac{1}{\epsilon^2}}} [/mm] = [mm] \epsilon [/mm]
jetzt aber oder?


liebe Grüße!

Bezug
                                        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:41 So 15.12.2013
Autor: DieAcht


> du hast recht
>  also dann:
>  [mm]\frac{1}{\wurzel{N}} \le \frac{1}{\wurzel{\frac{1}{\epsilon^2}}}[/mm]
> = [mm]\epsilon[/mm]
>  jetzt aber oder?

[ok]

Zur Kontrolle: Wie wählst du dein [mm] N=N(\epsilon)\in\IN [/mm] ?

>  
>
> liebe Grüße!

DieAcht

Bezug
                                                
Bezug
Nullfolge: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:44 Mo 16.12.2013
Autor: Alex1993

na N [mm] \ge \wurzel{\frac{1}{\epsilon^{2}}} [/mm] oder?

Bezug
                                                        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Mo 16.12.2013
Autor: fred97


> na N [mm]\ge \wurzel{\frac{1}{\epsilon^{2}}}[/mm] oder?

Nein. Aus  $ [mm] \frac{1}{\wurzel{N}} \le \frac{1}{\wurzel{\frac{1}{\epsilon^2}}} [/mm] $

wird

N [mm] \ge \frac{1}{\epsilon^{2}} [/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de