www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Nullfolge/Divergent
Nullfolge/Divergent < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullfolge/Divergent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mi 22.02.2012
Autor: quasimo

Aufgabe
Wenn [mm] a_n [/mm] eine Nullfolge mit [mm] a_n [/mm] > 0 [mm] \forall [/mm] n [mm] \in \IN [/mm] ist, dass lim [mm] 1/a_n [/mm] = + [mm] \infty [/mm]

Vorraussetzung: [mm] a_n [/mm] Nullfogle also [mm] lim_{n->\infty} a_n [/mm] =0
Zunächst muss [mm] a_n \not= [/mm] 0 sein
Jetzt muss ich doch zeigen, dass [mm] |1/a_n| [/mm] unbeschränkt ist.
Indirekt: Ich nehme an [mm] \exists [/mm] K [mm] :|1/a_n| \le [/mm] K, [mm] \forall [/mm] n [mm] \in \IN [/mm]
\ quadrieren
[mm] \frac{1}{a_n^2} \le K^2 [/mm]


Bin ich völlig am Holzweg? Wie sollte ich weitermachen?
Danke

        
Bezug
Nullfolge/Divergent: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Mi 22.02.2012
Autor: Schadowmaster

moin quasimo,

Der Anfang sieht gut aus.
Du brauchst aber garnicht zu quadieren, denn da [mm] $a_n [/mm] > 0$ vorausgesetzt ist, ist auch [mm] $1/a_n [/mm] > 0$.
Stell das ganze mal ein wenig um und bastel dir daraus einen Widerspruch zur Tatsache, dass [mm] $a_n$ [/mm] eine Nullfolge sei.

lg

Schadow

Bezug
                
Bezug
Nullfolge/Divergent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Mi 22.02.2012
Autor: quasimo

Ah okay.
<=> 1 [mm] \le K*a_n [/mm]
<=> 1/K [mm] \le a_n [/mm]
bedeutet das schon, dass [mm] a_n [/mm] keine Nullfolge ist?

Bezug
                        
Bezug
Nullfolge/Divergent: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Mi 22.02.2012
Autor: Gonozal_IX

Hiho,

> Ah okay.
>  <=> 1 [mm]\le K*a_n[/mm]

>  <=> 1/K [mm]\le a_n[/mm]

>  bedeutet das schon, dass
> [mm]a_n[/mm] keine Nullfolge ist?

Ja.
Bilde auf beiden Seiten nochmal den Grenzwert für [mm] $n\to\infty$, [/mm] damit erhälst du deinen Widerspruch :-)

MFG,
Gono.

Bezug
                                
Bezug
Nullfolge/Divergent: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 Mi 22.02.2012
Autor: quasimo

Ich dank dir.
Lg

Bezug
        
Bezug
Nullfolge/Divergent: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Do 23.02.2012
Autor: fred97


> Wenn [mm]a_n[/mm] eine Nullfolge mit [mm]a_n[/mm] > 0 [mm]\forall[/mm] n [mm]\in \IN[/mm] ist,
> dass lim [mm]1/a_n[/mm] = + [mm]\infty[/mm]
>  Vorraussetzung: [mm]a_n[/mm] Nullfogle also [mm]lim_{n->\infty} a_n[/mm] =0
>  Zunächst muss [mm]a_n \not=[/mm] 0 sein
>  Jetzt muss ich doch zeigen, dass [mm]|1/a_n|[/mm] unbeschränkt
> ist.

Das reicht nicht. Zeigen sollst Du:

Zu jedem K>0 ex. ein [mm] n_K [/mm] mit:  [mm] 1/a_n>K [/mm] für [mm] n>n_K [/mm]

FRED

>  Indirekt: Ich nehme an [mm]\exists[/mm] K [mm]:|1/a_n| \le[/mm] K, [mm]\forall[/mm] n
> [mm]\in \IN[/mm]
>  \ quadrieren
>  [mm]\frac{1}{a_n^2} \le K^2[/mm]
>  
>
> Bin ich völlig am Holzweg? Wie sollte ich weitermachen?
>  Danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de