www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Nullstellen
Nullstellen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 19:39 Do 04.12.2014
Autor: Budlike

Aufgabe
[mm] 3x^2+2xy^2+y=0 [/mm]
[mm] -3y^2+2x^2y+x=0 [/mm]

Wie kann ich aus diesen beiden Gleichungen die Nullstellen bestimmen? In der Aufgabenstellung steht, dass das Horner Schema von Vorteil sein kann. Ich kenne dieses jedoch nur bei Funktionen mit einer Variablen. Ich hänge schon wirklich lange an dieser Aufgabe und ich hoffe ihr könnt mir helfen.

Gruß Dominik

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Do 04.12.2014
Autor: abakus


> [mm]3x^2+2xy^2+y=0[/mm]
> [mm]-3y^2+2x^2y+x=0[/mm]
> Wie kann ich aus diesen beiden Gleichungen die Nullstellen
> bestimmen? In der Aufgabenstellung steht, dass das Horner
> Schema von Vorteil sein kann. Ich kenne dieses jedoch nur
> bei Funktionen mit einer Variablen. Ich hänge schon
> wirklich lange an dieser Aufgabe und ich hoffe ihr könnt
> mir helfen.

>

> Gruß Dominik

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
zum Hornerschema kann ich nichts sagen.
Auf den ersten Blick würde ich aber die beiden Gleichungen addieren.
Da ensteht links ein lustiger Term, aus dem man schon mal (x+y) ausklammern kann.
Gruß Abakus

Bezug
        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Fr 05.12.2014
Autor: fred97

Wenn x=0 ist so folgt sofort, dass y=0 ist

Wenn y=0 ist so folgt sofort, dass x=0 ist

Also ist (x,y)=(0,0) eine Lösung des Gleichungssystems.

Wir können im Folgenden also von x [mm] \ne [/mm] 0 und y [mm] \ne [/mm] 0 ausgehen.

Löse beide Gleichungen nach 2xy auf. Dann solltest Du [mm] y^3=-x^3 [/mm] bekommen.

Das zeigt schon mal, jedes Paar (x,-x) eine Lösung des Gleichungssystems ist

Diese Lösungen hättest Du auch mit dem Vorschlag von Abakus erhalten.

Nun stellt sich die Frage: gibt es noch weitere Lösungen ?

Jetzt bist Du gefragt.

FRED

Bezug
                
Bezug
Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:52 Fr 05.12.2014
Autor: Budlike

Vielen Dank schonmal dass ihr so schnell geantwortet habt. Ich habe nun 2xy ausgeklammert und bin dann natürlich auf den Ausdruck [mm] x^3=-y^3. [/mm] Aber daraus kann man doch nicht schließen dass ein weiterer Punkt P(x,-x) ist,oder? Ich meine man kann ja nicht einfach die dritte Wurzel ziehen, da es ja [mm] -y^3 [/mm] ist. Laut Wolfram Alpha kommt auch ein direkter Wert für die zweite Nullstelle raus.

[mm] P((\wurzel[2]{17}-3)/4 [/mm] , [mm] (3-\wurzel[2]{17})/4) [/mm]

Bezug
                        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Fr 05.12.2014
Autor: abakus


> Vielen Dank schonmal dass ihr so schnell geantwortet habt.
> Ich habe nun 2xy ausgeklammert und bin dann natürlich auf
> den Ausdruck [mm]x^3=-y^3.[/mm] Aber daraus kann man doch nicht
> schließen dass ein weiterer Punkt P(x,-x) ist,oder? Ich

Waum denn nicht?
Wenn [mm] $x^3=-y^3$ [/mm] gilt, dann ist entweder [mm] $x^3$ [/mm] positiv und [mm] $y^3$ [/mm] negativ oder umgekehrt.
Zudem haben beide den gleichen Betrag.


> meine man kann ja nicht einfach die dritte Wurzel ziehen,
> da es ja [mm]-y^3[/mm] ist. Laut Wolfram Alpha kommt auch ein
> direkter Wert für die zweite Nullstelle raus.

Den solltest du auch selbst herausbekommen, wenn du in beiden Gleichungen jedes y durch -x ersetzt.
Gruß Abakus
>

> [mm]P((\wurzel[2]{17}-3)/4[/mm] , [mm](3-\wurzel[2]{17})/4)[/mm]

Bezug
                                
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:57 Fr 05.12.2014
Autor: Budlike

Wow super! Ihr habt mir sehr geholfen. Vielen Dank !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de