www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Nullstellen
Nullstellen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Tipp
Status: (Frage) beantwortet Status 
Datum: 08:40 Do 01.02.2007
Autor: GaryFisher

Hallo, ich komme nicht mehr auf die Nullstellen bzw. die anderen Punkte? Kann mir bitte einer das noch einmal erklären? Es muss doch noch, ausser dem Binären Suchen noch eine einfache Möglichkeit geben. Mit dem Newton'schen Verfahren komm ich nicht klar. Hätte einer Lust mir das Schritt für Schritt zu erklären? Ich denke es ist die Polynomdivision, die ich nicht beherrsche!
ges. sind die Nullstellen, Extrempunkt und Wendepunkt

y= [mm] \bruch{1}{64}x^{4} [/mm] -  [mm] \bruch{1}{8}x^{3} [/mm] + 2x

        
Bezug
Nullstellen: Tipp
Status: (Antwort) fertig Status 
Datum: 08:57 Do 01.02.2007
Autor: Braunstein

Hey,

kleiner Tipp:

1) [mm] x^{4}-8x^{3}+128x=0 [/mm] (Multiplikation mit 64)
2) [mm] x(x^{3}-8x^{2}+128)=0 [/mm] (Bereits jetzt erhälst du die erste Nullstelle)
3) Annäherung der reellen Nullstelle mit Newton-Verfahren, bezogen auf den Inhalt der Klammer (http://www.arndt-bruenner.de/mathe/java/newton.htm)
4) Polynomdivision durch die reelle Nullstelle (http://de.wikipedia.org/wiki/Polynomdivision)

Um die letzten beiden Schritte wirst du wahrscheinlich nicht herum kommen. Aber üb die nur, sind recht praktisch für's Leben, zumindest auf Ingenieursebene, HTL, etc.

Gruß, Brauni

Bezug
                
Bezug
Nullstellen: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:02 Do 01.02.2007
Autor: GaryFisher

Vielen Dank, werde mir Links einmal ansehen und mich wieder melden. Dank vorab. Gary

Bezug
                
Bezug
Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 Do 01.02.2007
Autor: GaryFisher

Hallo, nun hätte ich doch eine Frage.

Ich komme bei meiner Polynomen Division nicht weiter
[mm] x^3-8x^2+128 [/mm] = 0

muss ich nun durch (x-1) oder [mm] (x^2-1) [/mm] dividieren ?

[mm] (x^3-8x^2+128) [/mm] : (x-1) [mm] =x^2-6x [/mm]
[mm] -(x^3-x^2) [/mm]
   [mm] -6x^2+128 [/mm]
      [mm] -(-6x^2+6x+128) [/mm]
         .....nun steh ich da

      

Bezug
                        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 Do 01.02.2007
Autor: angela.h.b.


> Hallo, nun hätte ich doch eine Frage.
>  
> Ich komme bei meiner Polynomen Division nicht weiter
>  [mm]x^3-8x^2+128[/mm] = 0
>  
> muss ich nun durch (x-1) oder [mm](x^2-1)[/mm] dividieren ?

Hallo,

ob und wodurch Du dividieren mußt, hängt natürlich ganz davon ab, was Du vorhast...

Ich habe es so verstanden, daß Du auf der Suche nach Nullstellen bist.

Wenn Du eine Nullstelle a gefunden hast, kannst du durch (x-a) dividieren und erhältst hieraus schließlich Dein Polynom als Produkt aus (x-a) und einem weiteren von niedrigem Grad, bei welchem Du nun als nächstes nach Nullstellen fahnden würdest.

Nun ist aberbei Deinem Polynom 1 mitnichten eine Nullstelle! Daher kannst du den Gedanken, (x-1) als Linearfaktor abzuspalten, knicken.

Voraussetzung für eine Dividiererei mit diesem Ziel aber ist, daß Du bereits eine Nullstelle gefunden hast - sei es, im nicht zu verachtenden heiteren Nullstellenraten.

Leider wird das Raten hier aber nicht funktionieren, willst du eine exakte Nullstelle mußt du diese mit den Cardano-Formeln berechnen oder ein Näherungsverfahren anwenden.

Wenn Du die Funktion genauer untersuchst, wirst Du gfeststellen, daß es danach keien weiteren reellen Nullstellen mehr gibt.


Vielleicht dividierst Du aber aus einem völlig anderen Grund?

Für diesen Fall zeige ich Dir, wie Du die Division zuende bringen kannst.

Nebenbei: -8+1=-7


>  
> [mm](x^3-8x^2+128)[/mm] : (x-1) [mm]=x^2-7x[/mm]+7 [mm] +\bruch{135}{x-1} [/mm]
>  [mm]-(x^3-x^2)[/mm]
>     [mm]-7x^2+128[/mm]
>        [mm]-(-7x^2+7x)[/mm]

          [mm]-------------------[/mm]

>        [mm] 7x+ 128[/mm]  
>        [mm] -( 7x- 7)[/mm]  
>        [mm]-------------[/mm]  
>        [mm] 135[/mm]


Ich habe jetzt keinen Nerv, die Rechnung noch optisch schön herzurichten, ich hoffe, Du verstehst sie so.

Gruß v. Angela

Bezug
                                
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:07 Do 01.02.2007
Autor: GaryFisher

Vielen Dank, Angela, habe es verstanden. Gary

Bezug
        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:32 Mi 14.02.2007
Autor: M.Rex

Hallo

Wenn du dir den Graph mal zeichnen lässt, erkennst du, dass er die beiden Nullstellen bei 0 und [mm] -\bruch{10}{3} [/mm] hat.

Dann kannst du nach dem Ausklammern die Polynomdivision mit [mm] (x\red{+}\bruch{10}{3}) [/mm] durchführen.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de