www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Nullstellen
Nullstellen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:23 So 04.03.2007
Autor: kev

Aufgabe
Bestätigen sie, dass die funktion f die angegebene Nullstelle hat. Berechnen sie die weiteren Nullstellen von f.

aufgabe: f(t) =  2t³ + 4,8t² + 1,5t - 0,2;
t0 = -2  

heyho! mal wieder eine Frage von mir....
Also ich habe zuerst geschaut ob -2 eine 0telle ist.
Dabei kam raus, dass dies wirklich eine ist.
Dann habe ich Polynomdivision gemacht,
bei der ich folgendes ergebnis bekam:
2t² + 0,8t -0,1

naja... das problem ist jetzt, wenn ich die pq formel anwende, dann bekomme ich nicht raus, was auf dem lösungszettel steht.
Dort steht nämlich: t1 = 0,1 und t2 = -0,5
naja und dann halt noch f(-2) = 0 , aber das ist mir klar.

Ich bekomme aber raus:
t1 = 0,1 (steht so auch auf dem zettel)
und t2 = -0,7
Ich hab auch mehrmals nachgerechnet und versch. wege versucht... aber irgendwie.... komme ich bei t2 einfach nicht auf das ergebnis, was auf dem lösungszettel steht.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:25 So 04.03.2007
Autor: Walde

hi kev,


> Bestätigen sie, dass die funktion f die angegebene
> Nullstelle hat. Berechnen sie die weiteren Nullstellen von
> f.
>  
> aufgabe: f(t) =  2t³ + 4,8t² + 1,5t - 0,2;
> t0 = -2
> heyho! mal wieder eine Frage von mir....
>  Also ich habe zuerst geschaut ob -2 eine 0telle ist.
>  Dabei kam raus, dass dies wirklich eine ist.
>  Dann habe ich Polynomdivision gemacht,
>  bei der ich folgendes ergebnis bekam:
>  2t² + 0,8t -0,1
>  
> naja... das problem ist jetzt, wenn ich die pq formel
> anwende, dann bekomme ich nicht raus, was auf dem
> lösungszettel steht.
>  Dort steht nämlich: t1 = 0,1 und t2 = -0,5
>  naja und dann halt noch f(-2) = 0 , aber das ist mir
> klar.
>  
> Ich bekomme aber raus:
>  t1 = 0,1 (steht so auch auf dem zettel)
>  und t2 = -0,7

da hast du dich nur verrechnet, ich krieg auch 0,1 und -0,5 raus:

da steht doch(nach Anwedung der p,q-Formel):

[mm] x_{1/2}=-\bruch{1}{5}\pm\wurzel{\bruch{1}{25}+\bruch{1}{20}} [/mm]

und da kommt [mm] \bruch{1}{10} [/mm] und [mm] -\bruch{5}{10} [/mm] raus.

> Ich hab auch mehrmals nachgerechnet und versch. wege
> versucht... aber irgendwie.... komme ich bei t2 einfach
> nicht auf das ergebnis, was auf dem lösungszettel steht.

Was soll ich sagen? Rechne es nochmal nach. Wenn du nicht drauf kommst,poste deinen Rechenweg, dann kann ich dir sagen, wo der Fehler liegt.


Lg walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de