www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Nullstellen
Nullstellen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Mo 17.05.2004
Autor: drummy

Hallo!

Ich suche die Nullstellen für folgende Funktion:

[mm] f(x)=0,04x^4-x^2+0,96 [/mm]

Ich hab durch euren FunkyPlot zwar die Lösungen kenne aber nicht den Rechenweg. Vielleicht kann mir ja einer helfen. Würde mich über einen einfachen Rechenweg freuen.

Im voraus schönen Dank

drummy

        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Mo 17.05.2004
Autor: Youri


> Hallo!

Hallo Drummy -

und willkommen im Matheraum!  

> Ich suche die Nullstellen für folgende Funktion:
>  
> [mm] f(x)=0,04x^4-x^2+0,96 [/mm]

Wie würdest Du denn normalerweise bei einer ganzrationalen Funktion vorgehen,
um die Nullstellen zu finden?

Dein Ausgangsfunktion ist eine Funktion vierten Grades die offenbar y-achsensymmetrisch ist, da nur Potenzen von x mit geradem Exponenten als Summanden vorkommen.

[mm] f(x)=0,04x^4-x^2+0,96 [/mm]

Setze
[mm] f(x) = 0 [/mm]

Als ersten Schritt würde ich Dir empfehlen, die Gleichung zu normieren, also den Vorfaktor vor dem Summanden mit der höchsten Potenz von x zu entfernen, in diesem Fall also die 0,04.

[mm] 0,04x^4-x^2+0,96 = 0 | : 0,04 [/mm]
[mm] x^4 - 25x^2 + 24 = 0 [/mm]

Jetzt sieht das ganze schon ein wenig übersichtlicher aus.
Mit einer kleinen Umformung / Ersetzung kannst Du nun zu einer "gewöhnlichen" quadratischen Gleichung gelangen, die Du z.B. mit der p/q-Formel lösen kannst.

Ersetze doch mal in der obigen Gleichung [mm] x^2 [/mm] durch [mm] z [/mm].

Siehst Du, was ich meine?
Kommst Du nun weiter mit der Lösung der Gleichung?

Über eine Rückmeldung oder weitere Fragen, falls ich mich unklar ausgedrückt haben sollte,
würde ich mich freuen.

Liebe Grüße,
Andrea.

Bezug
                
Bezug
Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Di 18.05.2004
Autor: drummy

Wenn ich doch jetzt für [mm] x^2 [/mm] z einsetze dann habe ich doch immer noch keine quadratische Funktion, sondern nur [mm] x^4-25z+24=0 [/mm] oder?

Wie lautet denn die Formel?




Bezug
                        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Di 18.05.2004
Autor: Oliver

Hallo Drummy,

nein, das Ersetzen von [mm] $x^2$ [/mm] durch $z$ macht nur Sinn, wenn Du  alle auftretenden [mm] $x^2$ [/mm] ersetzt - und [mm] $x^4$ [/mm] ist doch nichts anderes als [mm] $(x^2)^2$ [/mm] beziehungsweise nach Ersetzen [mm] $z^2$. [/mm]

Du erhälst also eine ganz normale quadratische Gleichung:

[mm]z^2-25z+24[/mm]

Die kannst Du jetzt Null setzen und wenn Du dann die Ersetzung rückgängig machst, kommst Du auf die gesuchten $x$. Probier's bitte mal alleine, wenn Fragen offen sind, kannst Du sie aber natürlich jederzeit hier loswerden.

Mach's gut
Oliver

Bezug
                                
Bezug
Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Di 18.05.2004
Autor: drummy

Diese Art zur Lösung der Aufgabe habe ich jetzt verstanden. Könnte mir vielleicht auch noch jemand helfen die Nullstellen dieser Funktion mit der Hilfe von der Polynomdivision zu finden?

[mm] (0,04x^4-x^2+0,96) [/mm]

Im voraus schönen Dank!

Bezug
                                        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Di 18.05.2004
Autor: Oliver

So, dann probieren wir es auch einmal mit Polynomdivision. Hier ist der Haken, dass Du alle Nullstellen bis auf die letzten beiden raten musst - Du kannst Dir vorstellen, dass das bei komplizierten Funktionen haarig ist.

Ergo: Die andere Methode mit der Substitution ist eleganter, wenn Du aber keine ordentliche Substitution findest, bist Du aufgeschmissen.

Nach der langen Vorrede aber nun zum eigentlichen Vorgehen:

Angenommen Du hast ein Polynom $n$-ten Grades ($x$ tritt als [mm] $x^n$ [/mm] in der höchsten Potenz auf), dann hat es maximal $n$ Nullstellen [mm] $N_i \in \IR$ [/mm] .  Falls es genau $n$ Nullstellen hat, lässt es sich in der Form [mm] $\prod_{i=1}^{n}{(x-N_i)}$ [/mm] darstellen. Durch Erraten der ersten Nullstelle [mm] $N_1$ [/mm] kennst Du also bereits einen der Faktoren in dieser Darstellung, nämlich [mm] $(x-N_1)$. [/mm] Du kannst also das Polynom durch diesen Faktor teilen, erhälst ein Polynom $(n-1)$-ten Grades und so machst Du weiter, bis Du bei einer quadratischen Gleichung angelangt bist. Deren Nullstellen kannst Du dann wie gehabt ausrechnen.

Zur Verdeutlichung mache ich Dir den ersten Schritt mal an Deiner Aufgabe vor, den Rest probierst Du bitte mal selber (die Lösungen kennst Du ja schon, da kannst Du gut kontrollieren).

1. Ich habe das Polynom [mm] $p(x)=x^4-25x^2+24$ [/mm] (der besseren Lesbarkeit Willen habe die Funktion wieder mit dem Faktor 25 multipliziert) vierten Grades, es gibt also maximal 4 Nullstellen. Ich rate, dass 1 eine Nullstelle ist (Tipp: Immer mal zuerst mit -1, 0, 1, 2 probieren ... Euer Lehrer wird Euch schon keine Aufgaben geben, bei denen ihr [mm] $\sqrt{23}$ [/mm] oder so etwas raten müsst) und überprüfe, dass $p(1)=1-25+24=0$ tatsächlich Null ist.

2. Ich führe die Polynomdivision durch (geht wie schriftliche Division), d.h. ist teile $p(x) : (x-1)$, und reduziere den Grad meines Polynoms so um 1 :
[mm](x^4-25x^2+24):(x-1)= \red{x^3} \blue{+x^2} \green{-24x} -24 \\ \red{-(x^4-x^3)} \\ \red{=x^3-25x^2+24} \\ \blue{-(x^3-x^2)} \\ \blue{=-24x^2+24} \\ \green{-(-24x^2+24x)} \\ \green{=-24x+24} \\ -(-24x+24) \\ =0[/mm]

3. Jetzt habe ich mein neues Polynom [mm] $p_1(x)=x^3+x^2-24x-24$ [/mm] und rate wieder eine Nullstelle. Diesmal "springt" mir -1 in's Auge. Ich mache also wieder Polynomdivision, diesmal  [mm] $p_1(x) [/mm] : [mm] (x-(-1))=p_1(x) [/mm] : (x+1)$. Probier' hier mal bitte selbst weiter ... bei dem Thema macht erst Übung Meister :))

4. Jetzt müsstest Du bei einer quadratischen Gleichung angelegt sein, d.h. ein Polynom zweiten Grades. Wenn Du das mit pq-Formel löst, kommst Du auf Deine zwei noch fehlenden Nullstellen.

Mach's gut
Oliver

Bezug
                                                
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:51 Di 18.05.2004
Autor: drummy

Hallo Oliver,


schönen Dank für die Erklärung der Polynomdivision!

Hab die Lösungen rausbekommen


Gruß Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de