www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Nullstellen berechnen
Nullstellen berechnen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 So 16.12.2007
Autor: MrWangster

Aufgabe
Bestimmen Sie alle x-Werte, für welche die folgende Funktion den gegebenen Funktionwert a annimmt.

[mm] f(x) = -3x^3 + 4x^2 + 1;\,\, a = -7 [/mm]

Hallo,

im Grunde versteh ich die Aufgabe nicht ganz. a ist ja der Wert vor der [mm]x^3[/mm].

Was muss ich hier genau machen? Hat jemand einen Tipp?

lg,
MrWangster

        
Bezug
Nullstellen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 So 16.12.2007
Autor: moody

Ich denke mal a ist der y-Wert.

Bezug
                
Bezug
Nullstellen berechnen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:44 So 16.12.2007
Autor: MrWangster

Achso, also muss ich alle x-Werte von dem y-Wert herauskriegen. Die x-Achse ist also sozusagen "verschoben". Okay.

Aber wie fahre ich nun fort? Muss ich für x eine Zahl herauskriegen, sodass am Ende 4 rauskommt und ich die Polynomdivision/Substitution usw. durchführen kann? Kann man das so machen?

Bezug
                        
Bezug
Nullstellen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 So 16.12.2007
Autor: ONeill

Hallo!
f(x) = [mm] -3x^3 [/mm] + [mm] 4x^2 [/mm] + 1
Du setzt f(x)=a=-7
[mm] -7=-3x^3 [/mm] + [mm] 4x^2 [/mm] + 1
Die 7 bringst du auf die rechte Seite und kannst dann mit Polynomdivision die "Nullstelle" bestimmen.
Gruß ONeill

Bezug
                                
Bezug
Nullstellen berechnen: Vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 So 16.12.2007
Autor: MrWangster

Ah, ist ja ziemlich einfach. Hab dann die Aufgabe falsch verstanden... hätten die für a einen anderen Buchstaben genommen... Vielen Dank ONeill!

Bezug
                                
Bezug
Nullstellen berechnen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 22:18 So 16.12.2007
Autor: angela.h.b.


> Hallo!
>  f(x) = [mm]-3x^3[/mm] + [mm]4x^2[/mm] + 1
>  Du setzt f(x)=a=-7
>  [mm]-7=-3x^3[/mm] + [mm]4x^2[/mm] + 1
>  Die 7 bringst du auf die rechte Seite

Hallo,

dann hat man

[mm] 0=-3x^3[/mm] [/mm] + [mm]4x^2[/mm] + 8,

wovon die Nullstelle zu suchen ist.

> und kannst dann mit
> Polynomdivision die "Nullstelle" bestimmen.

Das wird nicht klappen.

Zunächst einmal muß man irgendwie eine Nullstelle finden, danach kann man per Polynomdivision den entsprechenden Linearfaktor, also (x - Nullstelle), abspalten, um danach ggf. die weiteren Nullstellen zu berechnen.

Gruß v. Angela



Bezug
                                        
Bezug
Nullstellen berechnen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 22:28 So 16.12.2007
Autor: Tyskie84

Hallo warum wird das denn nicht klappen...die erste Nullstelle ist 2. f(x)= -3x²+4x+1 dann die 2 da einsetzen und man bekommt als funktionswert -7 heraus. den rest dann mit polynomdivision lösen und man ist fertig

Bezug
                                                
Bezug
Nullstellen berechnen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 22:41 So 16.12.2007
Autor: angela.h.b.


> Hallo warum wird das denn nicht klappen...die erste
> Nullstelle ist 2. f(x)= [mm] -3x^3+4x^2+1 [/mm] dann die 2 da einsetzen
> und man bekommt als funktionswert -7 heraus. den rest dann
> mit polynomdivision lösen

Das ist doch mein Reden: bevor man irgendwelche Polynome dividiert, braucht man eine Nullstelle! Wodurch sollte man sonst dividieren?
Insofern ist Polynomdivision keine Methode zur Ermittlung v. Nullstellen - nichtsdestotrotz nützlich in dem >Zusammenhang.

Klar, wenn man die 2 erraten hat, DANN dividiert man [mm] -3x^3+4x^2+1 [/mm] durch (x-2), um dann wiederum bei dem quadratischen Polynom, welches man erhält, mit einer der Methoden, die einem einfallen, ggf. eine Nullstelle zu bestimmen.

Gruß v. Angela

Bezug
                                                        
Bezug
Nullstellen berechnen: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 00:14 Mo 17.12.2007
Autor: Tyskie84

Hallo Angela!

> > Hallo warum wird das denn nicht klappen...die erste
> > Nullstelle ist 2. f(x)= [mm]-3x^3+4x^2+1[/mm] dann die 2 da
> einsetzen
> > und man bekommt als funktionswert -7 heraus. den rest dann
> > mit polynomdivision lösen
>
> Das ist doch mein Reden: bevor man irgendwelche Polynome
> dividiert, braucht man eine Nullstelle! Wodurch sollte man
> sonst dividieren?
>  Insofern ist Polynomdivision keine Methode zur Ermittlung
> v. Nullstellen - nichtsdestotrotz nützlich in dem
> >Zusammenhang.
>  
> Klar, wenn man die 2 erraten hat, DANN dividiert man
> [mm]-3x^3+4x^2+1[/mm] durch (x-2), um dann wiederum bei dem
> quadratischen Polynom, welches man erhält, mit einer der
> Methoden, die einem einfallen, ggf. eine Nullstelle zu
> bestimmen.
>  

Dann habe ich dich falsch verstanden :-) Ich dachte du meinst dass man allgemein mit der Polynomdivision nicht weiter kommt

[cap] Gruß David

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de