Nullstellen finden n-ten Grade < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:36 Di 15.01.2013 | Autor: | Hero991 |
Aufgabe | Finden Sie alle reellen Nullstellen der folgenden reellen Polynome:
c.) [mm] (x^2 [/mm] + 2x − [mm] 4)^2 [/mm] − (x − [mm] 3)^2
[/mm]
e.) [mm] x^8 [/mm] + [mm] 0x^6 [/mm] + [mm] x^4 [/mm] + 1
f.) [mm] (x^4 [/mm] − [mm] 3x^2 [/mm] − [mm] 40)(x^2 [/mm] + 5x + 2)
[mm] g.)x^8 [/mm] + [mm] x^7 [/mm] − [mm] 6x^5 [/mm] − [mm] 6x^4 [/mm] + [mm] 9x^2 [/mm] + 9x
h.) [mm] x^6 [/mm] + [mm] 6x^5 [/mm] + [mm] 15x^4 [/mm] + [mm] 20x^3 [/mm] + [mm] 15x^2 [/mm] + 6x + 1 |
Hallo,
ich wollte wissen, wie man Nullstellen n.-ten Gerades herausfinden kann. Dass einzige Verfahren was ich kenne, ist die Polynom Division aber bei einen Grad von [mm] x^8 [/mm] muss es doch ein besseres Verfahren geben um die Nullstellen per Hand zu errechnen.
Was ich noch wissen wollte, ist wie ich mit der Aufgabe c.) umgehen soll. Ich habe die Nullstellen einzeln ausgerechnet aber ich denke, dass das falsch ist weil ich nicht subtrahiert habe.
|
|
|
|
Hallo,
> Finden Sie alle reellen Nullstellen der folgenden reellen
> Polynome:
>
> c.) [mm](x^2[/mm] + 2x − [mm]4)^2[/mm] − (x − [mm]3)^2[/mm]
> e.) [mm]x^8[/mm] + [mm]0x^6[/mm] + [mm]x^4[/mm] + 1
> f.) [mm](x^4[/mm] − [mm]3x^2[/mm] − [mm]40)(x^2[/mm] + 5x + 2)
> [mm]g.)x^8[/mm] + [mm]x^7[/mm] − [mm]6x^5[/mm] − [mm]6x^4[/mm] + [mm]9x^2[/mm] + 9x
> h.) [mm]x^6[/mm] + [mm]6x^5[/mm] + [mm]15x^4[/mm] + [mm]20x^3[/mm] + [mm]15x^2[/mm] + 6x + 1
> Hallo,
> ich wollte wissen, wie man Nullstellen n.-ten Gerades
> herausfinden kann. Dass einzige Verfahren was ich kenne,
> ist die Polynom Division aber bei einen Grad von [mm]x^8[/mm] muss
> es doch ein besseres Verfahren geben um die Nullstellen per
> Hand zu errechnen.
Das ist ja der Witz daran. Ab der 3. Ordnung wird das theoretisch richtig schwierig, ab der 5. Ordnung geht es i.a. überhaupt nicht mehr. Daher sind diese Aufgaben so gedacht, dass man den einen oder anderen Trick anwenden soll.
Bei der c) kannst du doch einfach ausmultiplizieren, dann bekommst du eine lineare Gleichung.
Bei der e) beachte den äußerst sinnigen Koeffizienten vor dem [mm] x^6. [/mm] Wenn der so stimmt, dann substituiere [mm] z=x^4.
[/mm]
f): Satz vom Nullprodukt. Also die Nullstellen der Klammern getrennt berechnen.
Bei der g) kann man x ausklammern, und eine sehr einfache Lösung raten, dann mal eine Polynomdivision wagen und weitersehen.
Bei Aufgabe h) muss ich irgendwie an Pascal denken, wieso bloß?
> Was ich noch wissen wollte, ist wie ich mit der Aufgabe c.)
> umgehen soll. Ich habe die Nullstellen einzeln ausgerechnet
> aber ich denke, dass das falsch ist weil ich nicht
> subtrahiert habe.
Das ist falsch, aus genau dem Grund, den du angeführt hast. Tipp siehe oben!
Gruß, Diophant
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:00 Di 15.01.2013 | Autor: | Sax |
Hi,
wenn dir Ausmultiplizieren bei c) nichts bringt, dann versuche es mal mit der dritten binomischen Formel.
Gruß Sax.
|
|
|
|