www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Nullstellen von Funktionen
Nullstellen von Funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 So 16.12.2012
Autor: Unwissende33

Aufgabe
Bestimme die Nullstellen der Funktion f.
a) f(x) = [mm] (x-3)(x^3-8x) [/mm]

Ich habs mit Polynomdivision probiert, weil ich ja eine Nullstelle habe. Aber da bleibt ein Rest und das darf beim Abdividieren einer Nullstelle doch eigentlich nicht passieren.

[mm] x^3 [/mm] + [mm] 0x^2 [/mm] -8x/(x - 3) = [mm] x^2 [/mm] + 3x + 1
[mm] -(x^3 -3x^2) [/mm]
------------------------------
          [mm] -3x^2 [/mm] - 8x
           [mm] (3x^2 [/mm] - 9x)
----------------------------------
                         x
                         x - 3
-------------------------------------
                              3

Ich wüsste auch nicht, was ich da sonst machen sollte. Subsituieren funktioniert ja auch nicht.
Ich wäre für Hilfe wirklich dankbar.

        
Bezug
Nullstellen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 So 16.12.2012
Autor: M.Rex


> Bestimme die Nullstellen der Funktion f.
>  a) f(x) = [mm](x-3)(x^3-8x)[/mm]
>  Ich habs mit Polynomdivision probiert, weil ich ja eine
> Nullstelle habe.

Wie hast du diese denn ermittelt?

Du kannst hier wunderbar faktorisieren.

[mm] $f(x)=(x-3)\cdot(x^3-8x)=(x-3)\cdot x\cdot(x^2-8)$ [/mm]

Nun kannst du, da du die Nullstellen suchst, den Satz des Nullproduktes andwenden, der da sagt, dass ein Produkt genau dann Null ist, wenn einer der Faktoren null ist.
Hier hast du drei Faktoren, die du einzeln Null setzen kannst und musst.

Marius


Bezug
                
Bezug
Nullstellen von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 So 16.12.2012
Autor: Unwissende33


> > Bestimme die Nullstellen der Funktion f.
>  >  a) f(x) = [mm](x-3)(x^3-8x)[/mm]
>  >  Ich habs mit Polynomdivision probiert, weil ich ja eine
> > Nullstelle habe.
>
> Wie hast du diese denn ermittelt?

Die stand da doch schon, eben wegen des Satzes des Nullprodukts. (x - 3) kann man doch einfach so ablesen.

$ [mm] f(x)=(x-3)\cdot(x^3-8x)=(x-3)\cdot x\cdot(x^2-8) [/mm] $

Wieso hat denn da die Polynomdivison nicht funktioniert?

Und wenn ich das jetzt richtig verstanden habe, dann sind die x-Werte der Nullstellen 3, [mm] \wurzel{8} [/mm] und 0, oder?






Bezug
                        
Bezug
Nullstellen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 So 16.12.2012
Autor: M.Rex

Hallo


> > > Bestimme die Nullstellen der Funktion f.
>  >  >  a) f(x) = [mm](x-3)(x^3-8x)[/mm]
>  >  >  Ich habs mit Polynomdivision probiert, weil ich ja
> eine
> > > Nullstelle habe.
> >
> > Wie hast du diese denn ermittelt?
>  
> Die stand da doch schon, eben wegen des Satzes des
> Nullprodukts. (x - 3) kann man doch einfach so ablesen.
>  
> [mm]f(x)=(x-3)\cdot(x^3-8x)=(x-3)\cdot x\cdot(x^2-8)[/mm]
>  
> Wieso hat denn da die Polynomdivison nicht funktioniert?

Weil der Faktor x-3, der zur Nullstelle x=3 gehört, schon abgespalten war.

>  
> Und wenn ich das jetzt richtig verstanden habe, dann sind
> die x-Werte der Nullstellen 3, [mm]\wurzel{8}[/mm] und 0, oder?
>  

Fast, aus [mm] x^{2}-8=0 [/mm] folgt [mm] x_{1;2}=\pm\sqrt{8} x_{3}=0 [/mm] und [mm] x_{4}=3 [/mm] sind als Nullstellen aber korrekt.

Marius


Bezug
                                
Bezug
Nullstellen von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:41 So 16.12.2012
Autor: Unwissende33

Ach ja, das +/- vergess ich immer. Danke für deine Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de