www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Nullstellen von quadr. Fkt.
Nullstellen von quadr. Fkt. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen von quadr. Fkt.: Im Reellen und Komplexen
Status: (Frage) beantwortet Status 
Datum: 10:17 Do 01.12.2005
Autor: Commotus

Guten Morgen,
zu folgender Aufgabe habe ich mir folgende Überlegungen gemacht:

Aufgabe: Wieviele reelle Nullstellen kann die Funktion [mm] f(x)=x^2+ax+b [/mm] mit a,b [mm] \in \IR [/mm] maximal besitzen? Benennen sie sämtliche Nullstellen in [mm] \IR [/mm] und in [mm] \IC, [/mm] sowie die Bedingungen für deren Existenz.

Die Funktion [mm] f(x)=x^2+ax+b [/mm] kann im Reellen maximal zwei Nullstellen besitzen und zwar
x= [mm] \bruch{-a}{2} [/mm] +  [mm] \wurzel{ \bruch{a^2}{4} - b} [/mm] oder
x= [mm] \bruch{-a}{2} [/mm] -  [mm] \wurzel{ \bruch{a^2}{4} - b}, [/mm]
sofern [mm] \bruch{a^2}{4} [/mm] - b  > 0.

Im Komplexen können maximal vier Nullstellen vorhanden sein, einerseits die beiden Nullstellen, wenn [mm] \bruch{a^2}{4} [/mm] - b  > 0 und andererseits die beiden "imaginären" Lösungen, wenn [mm] \bruch{a^2}{4} [/mm] - b  < 0.

Sind meine Überlegungen soweit richtig?

Wäre dankbar für jede Hilfe!

Viele Grüße

        
Bezug
Nullstellen von quadr. Fkt.: Korrektur
Status: (Antwort) fertig Status 
Datum: 10:28 Do 01.12.2005
Autor: Roadrunner

Guten Morgen Commotus!


> Die Funktion [mm]f(x)=x^2+ax+b[/mm] kann im Reellen maximal zwei
> Nullstellen besitzen und zwar
>  x= [mm]\bruch{-a}{2}[/mm] +  [mm]\wurzel{ \bruch{a^2}{4} - b}[/mm] oder
>  x= [mm]\bruch{-a}{2}[/mm] -  [mm]\wurzel{ \bruch{a^2}{4} - b},[/mm]
> sofern [mm]\bruch{a^2}{4}[/mm] - b  > 0.

[daumenhoch] Richtig!

Streng genommen bei  [mm] $\bruch{a^2}{4}-b [/mm] \ [mm] \red{\ge} [/mm] \ 0$ .

Dann ist $x \ = \ [mm] -\bruch{a}{2}$ [/mm] eine doppelte Nullstelle.


  

> Im Komplexen können maximal vier Nullstellen vorhanden sein,

[notok] Eine quadratische Funktion [mm] $x^{\red{2}}$ [/mm] hat auch exakt [mm] $\red{2}$ [/mm] Lösungen in [mm] $\IC$ [/mm] .


> einerseits die beiden Nullstellen, wenn
> [mm]\bruch{a^2}{4}[/mm] - b  > 0 und andererseits die beiden
> "imaginären" Lösungen, wenn [mm]\bruch{a^2}{4}[/mm] - b  < 0.

Aber diese beiden Fälle schließen sich ja gegenseitig aus, so dass immer nur einer der beiden Fälle eintreten kann.

[mm] $\Rightarrow$ [/mm] Also: auch in [mm] $\IC$ [/mm] maximal 2 Lösungen (siehe oben).


Gruß vom
Roadrunner


Bezug
                
Bezug
Nullstellen von quadr. Fkt.: Vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:48 Do 01.12.2005
Autor: Commotus

Vielen Dank für deine Hilfe. Mit der Lösung im Komplexen hast du natürlich Recht!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de