www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Nullstellenbestimmung
Nullstellenbestimmung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Di 20.07.2004
Autor: lomac

Kann mir bitte jemand bei der Lösung (in plausiblen Einzelschritten) der folgenden Gleichung helfen ?
Wie kann ich diese Gleichung nach i auflösen und was kommt für i heraus ?
[mm] 0=946,49(1+i)^5-5000i-946,49 [/mm]

Vielen Dank für die Bemühungen

Ich habe diese Frage in keinem weiteren Forum gestellt

        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Di 20.07.2004
Autor: Brigitte

Hallo Iomac!

>  Wie kann ich diese Gleichung nach i auflösen und was kommt
> für i heraus ?
>  [mm]0=946,49(1+i)^5-5000i-946,49[/mm]

Also ich denke jetzt schon eine Weile über Deine Frage nach, aber ich bekomme keine analytische Lösung hin. Für alle, die sonst noch drüber nachdenken, möchte ich aber trotzdem kurz meine Überlegungen darstellen.

Ich nenne c:=946,49 und $q=1+i$. Dann gilt:

[mm]0 = c\cdot q^5-5000(q-1) -c[/mm]

[mm] \Leftrightarrow c(q^5-1)=5000(q-1)[/mm]

[mm] \Leftrightarrow \frac{q^5-1}{q-1} = \frac{5000}{c}.[/mm]

So, die rechte Seite kann man z.B. durch Polynomdivision kürzen zu

[mm]\frac{q^5-1}{q-1}=1+q+q^2+q^3+q^4.[/mm]

Aber dann hat man eben ein Polynom 4. Grades, dessen Nullstellen zumindest ich gerade nicht ohne Weiteres analytisch bestimmen kann.

Die numerische Lösung (z.B. per Newton-Verfahren oder Intervallhalbierung oder...) lautet $q=1.0275$, also $i=2.75 [mm] \%$. [/mm]

Sorry, hoffentlich hat jemand anderes noch eine bessere Lösung.

Viele Grüße
Brigitte

Bezug
        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Di 20.07.2004
Autor: Josef


>  Wie kann ich diese Gleichung nach i auflösen und was kommt
> für i heraus ?
>  [mm]0=946,49(1+i)^5-5000i-946,49 [/mm]


Die Gleichung ist im allgemeinen nicht mehr geschlossen nach i auflösbar. Zur Lösung ist dann ein Iterationsverfahren (z.B. Sekantenverfahren oder Newton-Verfahren) zu verwenden.


[]sites.inka.de/picasso/Dueser/page.htm

Bezug
        
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Mi 21.07.2004
Autor: Marc

Hallo zusammen,

es wird wahrscheinlich nicht viel helfen, aber eine Lösung ist i=0, was man durch blosses Ansehen erkennen kann.
Ansonsten habe ich aber auch keine Idee.

Viele Grüße,
Marc



Bezug
        
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:19 Do 22.07.2004
Autor: lomac

vielen Dank für Euere Bemühungen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de