www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Nullstellenbestimmung
Nullstellenbestimmung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Mi 30.08.2006
Autor: Chaosprinzessin

Aufgabe
Diskutieren Sie die Funktion f.

f(x)= [mm] \bruch{1}{10}(x^5-15x^3) [/mm]

Guten Abend zusammen,

bin nun tatsächlich seit über einem halben Jahr im LK und find's ganz interessant, bereue meine Wahl noch nicht.

Oben genannte Funktion soll ich diskutieren. Definitionsbereich, Ableitungen und Symmetrie sowie y-Achsenabschnitt hab ich jetzt.
Nun die Nullstellen.

Ich rechne mit der Aufgelösten weil mir das leichter fällt, also:

f(x)=  [mm] \bruch{1}{10}x^5-1 \bruch{1}{2} x^3 [/mm]

Ich habe als nächstes [mm] x^3 [/mm] ausgeklammert

[mm] x^3( [/mm]   [mm] \bruch{1}{10}x^2-1 [/mm]   [mm] \bruch{1}{2} [/mm]    )

Eine Nullstelle, 0 nämlich, habe ich bereits und da einer meiner Faktoren nun 0 sein muss kann ich den vor der Klammer außer acht lassen (Ich weiß nicht wie ich besser erklären soll was ich meine)

Bleibt mir   [mm] \bruch{1}{10}x^2-1 [/mm]   [mm] \bruch{1}{2} [/mm]    

Zur Vereinfachung durch [mm] \bruch{1}{10} [/mm] teilen

bleibt [mm] x^2-15 [/mm]

pq Formel ist unnötig weil ich doch gleich Wurzel ziehen kann.
Da ich keine negative Wurzel ziehen kann (D=R) hole ich mir 15 auf die andere Seite

[mm] 15=x^2 [/mm] dann Wurzelziehen
3,87=x

Nun aber zu meinen Problemen (Fragen):

Laut Funktionsplotter muss x c.a.1,6 sein, nicht 3,87.
Welche(n) Fehler mache ich?
Sicher ist meine Methode etwas sehr umständlich, kann mir bitte jemand helfen die Nullstellen schnell und sicher zu bestimmen?
Ich scheue mich nicht vor Methoden die wir noch nicht hatten (hatten bisher ausklammern und Polynomdivision die doch vieeeel zu lange dauert!)

Viele Grüße, Chaosprinzessin


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nullstellenbestimmung: stimmt alles!
Status: (Antwort) fertig Status 
Datum: 21:47 Mi 30.08.2006
Autor: Disap


>  Guten Abend zusammen,

Hallo Chaosprinzessin, herzlich [willkommenmr]!!!

> Diskutieren Sie die Funktion f.
>  
> f(x)= [mm]\bruch{1}{10}(x^5-15x^3)[/mm]
>  
> bin nun tatsächlich seit über einem halben Jahr im LK und
> find's ganz interessant, bereue meine Wahl noch nicht.

Na toll :-)

> Oben genannte Funktion soll ich diskutieren.
> Definitionsbereich, Ableitungen und Symmetrie sowie
> y-Achsenabschnitt hab ich jetzt.
>  Nun die Nullstellen.
>  
> Ich rechne mit der Aufgelösten weil mir das leichter fällt,
> also:
>  
> f(x)=  [mm]\bruch{1}{10}x^5-1 \bruch{1}{2} x^3[/mm]

[ok]

Aber, eigentlich ist das nicht unbedingt die beste Variante, denn wenn wir die Nullstellen berechnen wollen, haben wir ja:

$0 = [mm] \blue{\bruch{1}{10}}(x^5-15x^3)$ [/mm]

Das blaue ist nur zur Verwirrung da, es reicht, wenn du folgendes betrachtest:

$0 = [mm] (x^5-15x^3)$ [/mm]

Das lässt sich entweder durch den Satz vom Nullprodukt erklären, der eben besagt, ein Produkt wird Null, wenn (mindestens) einer der Faktoren Null wird, oder aber, indem wir einmal durch den Bruch teilen:

$0 = [mm] \blue{\bruch{1}{10}}(x^5-15x^3)$ [/mm] // [mm] :$\br{1}{10}$ [/mm]

[mm] $\frac{0}{\br{1}{10}} [/mm] = [mm] 1(x^5-15x^3)$ [/mm]

$0 = [mm] (x^5-15x^3)$ [/mm]

Aber beziehen wir uns ruhig mal auf deine Rechnung.

> Ich habe als nächstes [mm]x^3[/mm] ausgeklammert
>  
> [mm]x^3([/mm]   [mm]\bruch{1}{10}x^2-1[/mm]   [mm]\bruch{1}{2}[/mm]    )
>  
> Eine Nullstelle, 0 nämlich, habe ich bereits und da einer

Nicht nur eine Nullstelle, sondern eine dreifache Nullstelle. Das heißt, dass ein Sattelpunkt vorliegt.

> meiner Faktoren nun 0 sein muss kann ich den vor der
> Klammer außer acht lassen (Ich weiß nicht wie ich besser
> erklären soll was ich meine)

Mit dem Satz vom Nullprodukt, oder du schreibst:

[mm] $x^3=0 \wedge \bruch{1}{10}x^2-1\bruch{1}{2}=0$ [/mm]

> Bleibt mir   [mm]\bruch{1}{10}x^2-1[/mm]   [mm]\bruch{1}{2}[/mm]    
>
> Zur Vereinfachung durch [mm]\bruch{1}{10}[/mm] teilen
>  
> bleibt [mm]x^2-15[/mm]

[ok]

> pq Formel ist unnötig weil ich doch gleich Wurzel ziehen
> kann.

[daumenhoch]

>  Da ich keine negative Wurzel ziehen kann (D=R) hole ich
> mir 15 auf die andere Seite

Das musst du sowieso machen, denn sonst hättest du

[mm] $\wurzel{x^2-15}=0$ [/mm]

...

> [mm]15=x^2[/mm] dann Wurzelziehen
>  3,87=x

[ok]

Zumindest fast, denn die LösungEN sollte wohl lauten

[mm] $\red{\pm} [/mm] 3.87$

>  
> Nun aber zu meinen Problemen (Fragen):
>  
> Laut Funktionsplotter muss x c.a.1,6 sein, nicht 3,87.
>  Welche(n) Fehler mache ich?

Gar keine. Vielleicht hast du dich bei der Funktion vertippt, oder die Extremstellen/Wendepunkte berechnet (habe ich jetzt aber nicht überprüft)

>  Sicher ist meine Methode etwas sehr umständlich, kann mir

Nö, die ist gut.

> bitte jemand helfen die Nullstellen schnell und sicher zu
> bestimmen?

Wenn du nicht alles ausmultipliziert hättest, wäre es 'schneller und sicherer' gegangen.

>  Ich scheue mich nicht vor Methoden die wir noch nicht
> hatten (hatten bisher ausklammern und Polynomdivision die
> doch vieeeel zu lange dauert!)

Wenn man es nicht näherungsweise macht und böse Funktionen auftauchen, brauchst du mehr auch nicht. Etwas effektiveres gibt es also für solche Funktionen nicht.

> Viele Grüße, Chaosprinzessin

Liebe Grüße
Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de