www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Nullstellenbestimmung
Nullstellenbestimmung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung: Idee,Tipp
Status: (Frage) beantwortet Status 
Datum: 15:25 Di 18.12.2007
Autor: Tobi86

Aufgabe
Sei t [mm] \in \IR [/mm] und [mm] f(x):=\bruch{x+t+LN(x+t)}{x+t}.Geben [/mm] Sie die Nullstellen an.

Hallo,ich soll die Nullstellen der folgenden Funktion bestimmen! Ich weiß nur nicht,ob ich mich irgendwo verechnet habe,denn ich komme auf ein merkwürdiges Ergebnis!
Die Funktion lautet :
[mm] \bruch{x+t+LN(x+t)}{x+t} [/mm]
Eine Frage noch vorab,ich muss doch eigentlich eine Fallunterscheidung machen,wenn ich beispielsweise den Definitionsbereich ermitteln muss,mit t>0 und t<0,oder irre ich mich da,denn t [mm] \in \IR [/mm] und kann somit positive,wie auch negative Werte annehmen!!

so,aber wieder zu meinem ersten Problem,den Nullstellen:
[mm] \bruch{x+t+LN(x+t)}{x+t}=0 [/mm]
x+t+LN(x+t)=0
so und jetzt hängt es eigentlich auch schon,ich könnte jetzt doch das x+t auf die andere Seite bringen und dann auf beiden Seiten [mm] e^{x} [/mm] machen,das sieht dann so aus:
[mm] x+t=e^{-(x+t)} [/mm] nur hab ich davon nicht wirklich was!! wo liegt denn mein Fehler??
Danke schon mal,Tobi

        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Di 18.12.2007
Autor: Martin243

Hallo,

Nullstellen:
Hier hatte jemand ein ähnliches Nullstellenproblem. Bei dir gilt dasselbe: Die Lösung kannst du nur näherungsweise bestimmen durch ein Näherungsverfahren für die Nullstellenbestimmung oder durch eine Berechnungsformel für die Lambert-W-Funktion. Deine Lösung ist übrigens: [mm] $x_0 [/mm] = W(1) - t$.

> Eine Frage noch vorab,ich muss doch eigentlich eine Fallunterscheidung machen,wenn ich beispielsweise den Definitionsbereich ermitteln muss,mit t>0 und t<0,oder irre ich mich da,denn t  und kann somit positive,wie auch negative Werte annehmen!!

Das t ist unerheblich. Du musst nur zu jedem t die erlaubten x-Werte finden. Also musst du zum Einen ausschließen, dass der Nenner Null wird und zum Anderen sicherstellen, dass der Logarithmand positiv ist.
Ach ja: Der Logarithmus wird üblicherweise klein geschrieben. Hier im Matheraum benutzt du in Formeln am besten \ln und bekommst so [mm] $\ln$. [/mm]


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de