www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Nullstellenbestimmung
Nullstellenbestimmung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 So 22.02.2009
Autor: pehdr

Aufgabe
Geben Sie alle komplexen Nullstellen des reellen Polynoms F = [mm] X^9 [/mm] + [mm] 3*X^6 [/mm] + [mm] 3*X^3 [/mm] + 1 an.

Hallo,

Ich versuche die obige Aufgabe zu lösen und habe bisher folgendes gemacht. Man sieht ja, daß das Polynom die Koeffizienten die des Pascal'schen Dreiecks sind, ich habe es daher aufgeschrieben als:

F = [mm] (X^3 [/mm] + [mm] 1)^3 [/mm]

Dann habe ich [mm] X^3 [/mm] + 1 = 0 gelöst und bekomme dann die 3 Nullstellen

[mm] x_{0} [/mm] = 0.5 + [mm] \wurzel{3} [/mm] / 2 * i
[mm] x_{1} [/mm] = 0.5 - [mm] \wurzel{3} [/mm] / 2 * i
[mm] x_{2} [/mm] = -1

Ist das soweit richtig? Was muss ich denn jetzt weiter tun? Also die reelle Nullstelle -1 liegt ja drei mal vor, oder? Es muss doch insgesamt 9 Nullstellen geben, da das Polynom 9-ten Grades ist, nicht wahr?

Bitte gebt mir einen Hinweis, vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 So 22.02.2009
Autor: MathePower

Hallp pehdr,

> Geben Sie alle komplexen Nullstellen des reellen Polynoms F
> = [mm]X^9[/mm] + [mm]3*X^6[/mm] + [mm]3*X^3[/mm] + 1 an.
>  Hallo,
>  
> Ich versuche die obige Aufgabe zu lösen und habe bisher
> folgendes gemacht. Man sieht ja, daß das Polynom die
> Koeffizienten die des Pascal'schen Dreiecks sind, ich habe
> es daher aufgeschrieben als:
>  
> F = [mm](X^3[/mm] + [mm]1)^3[/mm]
>  
> Dann habe ich [mm]X^3[/mm] + 1 = 0 gelöst und bekomme dann die 3
> Nullstellen
>  
> [mm]x_{0}[/mm] = 0.5 + [mm]\wurzel{3}[/mm] / 2 * i
>  [mm]x_{1}[/mm] = 0.5 - [mm]\wurzel{3}[/mm] / 2 * i
>  [mm]x_{2}[/mm] = -1
>  
> Ist das soweit richtig? Was muss ich denn jetzt weiter tun?


Ja, das ist soweit richtig. [ok]


> Also die reelle Nullstelle -1 liegt ja drei mal vor, oder?


Ja, was heisst das dann für die anderen Nullstellen?



> Es muss doch insgesamt 9 Nullstellen geben, da das Polynom
> 9-ten Grades ist, nicht wahr?


So isses.


>  
> Bitte gebt mir einen Hinweis, vielen Dank!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß
MathePower

Bezug
                
Bezug
Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 Mo 23.02.2009
Autor: pehdr

Hallo MathePower, vielen Dank für die Antwort.

Also kommt jede Nullstelle 3 mal vor? Ich hatte das Polynom zur Kontrolle auf einer Webseite in eine Maske zur Nullstellenberechnung eingegeben und dort kamen noch andere komische Ergebnisse heraus, deshalb war ich mir nicht sicher.

Nun soll ich noch die Primfaktorzerlegung des Polynoms angeben. Ist damit die Linearfaktorzerlegung gemeint und ist da dies richtig:

F = (x + [mm] 1)^{3} [/mm] * ((x - [mm] \bruch{1}{2})^{2} [/mm] + [mm] (\bruch{\wurzel{3}}{2})^{2})^{3} [/mm]

Vielen Dank für eure Hilfe.

Bezug
                        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:58 Mo 23.02.2009
Autor: angela.h.b.


> Hallo MathePower, vielen Dank für die Antwort.
>  
> Also kommt jede Nullstelle 3 mal vor?

Hallo,

ja.

> Ich hatte das Polynom
> zur Kontrolle auf einer Webseite in eine Maske zur
> Nullstellenberechnung eingegeben und dort kamen noch andere
> komische Ergebnisse heraus, deshalb war ich mir nicht
> sicher.

Ach, das waren bestimmt irgendwelche genäherten Nullen beim Imaginärteil von 1, die Du nicht als solche erkannt hast.


>  
> Nun soll ich noch die Primfaktorzerlegung des Polynoms
> angeben. Ist damit die Linearfaktorzerlegung gemeint und
> ist da dies richtig:
>  
> F = (x + [mm]1)^{3}[/mm] * ((x - [mm]\bruch{1}{2})^{2}[/mm] + [mm](\bruch{\wurzel{3}}{2})^{2})^{3}[/mm]

F(x)= [mm] (x+1)^3*(x-(\bruch{1}{2}+ \bruch{\wurzel{3} }{2}i))^3(x-(\bruch{1}{2}- \bruch{\wurzel{3} }{2}i))^3 [/mm]

Das wäre die Zerlegung im Komplexen.

>  (x + [mm]1)^{3}[/mm] * ((x - [mm]\bruch{1}{2})^{2}[/mm] + [mm](\bruch{\wurzel{3}}{2})^{2})^{3}[/mm],

Dies ist die Zerlegung im  Reellen, ich würd's noch ausmultiplizieren und sortieren.

Gruß v. Angela

Bezug
                                
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:15 Mo 23.02.2009
Autor: pehdr

Super, alles klar und vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de