www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Nullstellenbestimmung
Nullstellenbestimmung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Do 14.06.2012
Autor: sandp

Hey,
hier ist meine Funktion, die ich gleich 0 gesetzt habe um die Nullstellen zu bestimmen

f(x) = [mm] x\* \bruch{x^{25}-1}{x-1} [/mm] - 74000 = 0

die Frage ist jetzt nur wie bekomme ich eine Lösung für x.
den ersten Teil kann ich als eine Summe schreiben, bringt mir das etwas?
x [mm] \* \bruch{x^{25}-1}{x-1} [/mm]  = [mm] \summe_{i=1}^{25} x^{i} [/mm]

Für Tipps wäre ich sehr dankbar.
mfg sandp

        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Do 14.06.2012
Autor: reverend

Hallo sandp,

das ist doch sicher keine Aufgabe für die Schule.

> Hey,
>  hier ist meine Funktion, die ich gleich 0 gesetzt habe um
> die Nullstellen zu bestimmen
>  
> f(x) = [mm]x\* \bruch{x^{25}-1}{x-1}[/mm] - 74000 = 0
>  
> die Frage ist jetzt nur wie bekomme ich eine Lösung für
> x.
>  den ersten Teil kann ich als eine Summe schreiben, bringt
> mir das etwas?
>  x [mm]\* \bruch{x^{25}-1}{x-1}[/mm]  = [mm]\summe_{i=1}^{25} x^{i}[/mm]

Das kannst Du nur, wenn Du die Funktion an der Stelle x=1, wo sie ja nicht definiert ist, stetig ergänzt - was hier immerhin möglich ist. Dann ist Deine Summe korrekt.
Weiter bringt Dich das aber nicht.

Es gibt mindestens drei Lösungen, will heißen: drei Nullstellen, aber sie sind nur numerisch zu finden. Wahrscheinlicher gibt es übrigens 25 Nullstellen...

Welche numerischen Verfahren stehen Dir denn zur Verfügung?

Eine Nullstelle liegt übrigens bei x=1,498475855.

Grüße
reverend

> Für Tipps wäre ich sehr dankbar.
>  mfg sandp


Bezug
                
Bezug
Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Do 14.06.2012
Autor: sandp


> Hallo sandp,
>  
> das ist doch sicher keine Aufgabe für die Schule.

Danke für die schnelle Antwort.
Diese Aufgabe wurde in der Berufsschule gestellt, ich bin selbst nur von einem Freund um Rat gefragt worden.

>  
> > Hey,
>  >  hier ist meine Funktion, die ich gleich 0 gesetzt habe
> um
> > die Nullstellen zu bestimmen
>  >  
> > f(x) = [mm]x\* \bruch{x^{25}-1}{x-1}[/mm] - 74000 = 0
>  >  
> > die Frage ist jetzt nur wie bekomme ich eine Lösung für
> > x.
>  >  den ersten Teil kann ich als eine Summe schreiben,
> bringt
> > mir das etwas?
>  >  x [mm]\* \bruch{x^{25}-1}{x-1}[/mm]  = [mm]\summe_{i=1}^{25} x^{i}[/mm]
>  
> Das kannst Du nur, wenn Du die Funktion an der Stelle x=1,
> wo sie ja nicht definiert ist, stetig ergänzt - was hier
> immerhin möglich ist. Dann ist Deine Summe korrekt.
>  Weiter bringt Dich das aber nicht.
>  
> Es gibt mindestens drei Lösungen, will heißen: drei
> Nullstellen, aber sie sind nur numerisch zu finden.
> Wahrscheinlicher gibt es übrigens 25 Nullstellen...
>  

Drei lösungen?
Gibt es nicht nur eine reelle Nullstelle und dann noch zusätzlich 25 komplexe Nullstellen? Weil der Grad gibt mir doch an wie viele Nullstellen es gibt?

> Welche numerischen Verfahren stehen Dir denn zur
> Verfügung?
>  

Mit Newton denke ich könnte man die Aufgabe lösen, aber wie du schon gesagt hast kann ich mir ebenfalls nicht vorstellen, dass sie dort solche numerischen Verfahren benutzen. Ich dachte, dass es vllt ein Trick gibt, womit man die Aufgabe einfach lösen kann. Woran sieht man eigentlich dass diese Aufgabe oder auch anderen Funktionen, nur mit numerischen Verfahren lösen kann?

> Eine Nullstelle liegt übrigens bei x=1,498475855.
>  

Ja diese hatte ich mit Hilfe des Computers auch gefunden

> Grüße
>  reverend
>  
> > Für Tipps wäre ich sehr dankbar.
>  >  mfg sandp
>  

Bezug
                        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Do 14.06.2012
Autor: reverend

Hallo nochmal,

> > das ist doch sicher keine Aufgabe für die Schule.
>  Danke für die schnelle Antwort.
>  Diese Aufgabe wurde in der Berufsschule gestellt, ich bin
> selbst nur von einem Freund um Rat gefragt worden.

Hm. Und da sollen die wirklich eine Nullstelle oder gar alle (falls es mehr als eine gibt) finden?

> > Es gibt mindestens drei Lösungen, will heißen: drei
> > Nullstellen, aber sie sind nur numerisch zu finden.
> > Wahrscheinlicher gibt es übrigens 25 Nullstellen...
>  >  
> Drei lösungen?
>  Gibt es nicht nur eine reelle Nullstelle und dann noch
> zusätzlich 25 komplexe Nullstellen? Weil der Grad gibt mir
> doch an wie viele Nullstellen es gibt?

Und woher weißt Du, dass alle anderen komplex sind? Insgesamt sind es 25; ich sehe aber, dass ich mich vorhin auch geirrt habe. Ich kann doch auch nur eine garantieren, und es spricht alles dafür, dass es die einzige reelle ist.
Allein das zu zeigen, dürfte die Mittel der Berufsschule aber normalerweise übersteigen.

>  > Welche numerischen Verfahren stehen Dir denn zur

> > Verfügung?
>  >  
> Mit Newton denke ich könnte man die Aufgabe lösen, aber
> wie du schon gesagt hast kann ich mir ebenfalls nicht
> vorstellen, dass sie dort solche numerischen Verfahren
> benutzen.

Das vielleicht nicht, aber eine einfache Intervallschachtelung reicht ja auch, man fummelt vielleicht nur ein bisschen länger herum. Tabellenkalkulationen oder GTR oder ein bisschen Programmierung müsste es doch auch an der Berufsschule geben.

> Ich dachte, dass es vllt ein Trick gibt, womit
> man die Aufgabe einfach lösen kann. Woran sieht man
> eigentlich dass diese Aufgabe oder auch anderen Funktionen,
> nur mit numerischen Verfahren lösen kann?

Naja, wenn man nicht durch geschickte Faktorisierung etwas erreichen kann, bleiben einem ja nur die analytischen Methoden, Polynomnullstellen zu ermitteln. Das geht ja nur bis Grad 3, danach wirds eigentlich immer numerisch.

>  > Eine Nullstelle liegt übrigens bei x=1,498475855.

>  >  
> Ja diese hatte ich mit Hilfe des Computers auch gefunden

Den habe ich auch genommen, da gerade kein Bierdeckel zur Hand war. ;-)

lg
reverend


Bezug
                                
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:41 Do 14.06.2012
Autor: sandp


> Hallo nochmal,
>  
> > > das ist doch sicher keine Aufgabe für die Schule.
>  >  Danke für die schnelle Antwort.
>  >  Diese Aufgabe wurde in der Berufsschule gestellt, ich
> bin
> > selbst nur von einem Freund um Rat gefragt worden.
>  
> Hm. Und da sollen die wirklich eine Nullstelle oder gar
> alle (falls es mehr als eine gibt) finden?

ich vermute mal, dass sie sich nur die reellen mit dem GTR anzeigen sollen

>  
> > > Es gibt mindestens drei Lösungen, will heißen: drei
> > > Nullstellen, aber sie sind nur numerisch zu finden.
> > > Wahrscheinlicher gibt es übrigens 25 Nullstellen...
>  >  >  
> > Drei lösungen?
>  >  Gibt es nicht nur eine reelle Nullstelle und dann noch
> > zusätzlich 25 komplexe Nullstellen? Weil der Grad gibt mir
> > doch an wie viele Nullstellen es gibt?
>  
> Und woher weißt Du, dass alle anderen komplex sind?
> Insgesamt sind es 25; ich sehe aber, dass ich mich vorhin
> auch geirrt habe. Ich kann doch auch nur eine garantieren,
> und es spricht alles dafür, dass es die einzige reelle
> ist.

mein Bierdeckel hat mir das gerade ausgespuckt ;)
du hast recht es sind insgesamt 25 und nur eine reelle Nullstelle

>  Allein das zu zeigen, dürfte die Mittel der Berufsschule
> aber normalerweise übersteigen.
>  
> >  > Welche numerischen Verfahren stehen Dir denn zur

> > > Verfügung?
>  >  >  
> > Mit Newton denke ich könnte man die Aufgabe lösen, aber
> > wie du schon gesagt hast kann ich mir ebenfalls nicht
> > vorstellen, dass sie dort solche numerischen Verfahren
> > benutzen.
>
> Das vielleicht nicht, aber eine einfache
> Intervallschachtelung reicht ja auch, man fummelt
> vielleicht nur ein bisschen länger herum.
> Tabellenkalkulationen oder GTR oder ein bisschen
> Programmierung müsste es doch auch an der Berufsschule
> geben.
>  
> > Ich dachte, dass es vllt ein Trick gibt, womit
> > man die Aufgabe einfach lösen kann. Woran sieht man
> > eigentlich dass diese Aufgabe oder auch anderen Funktionen,
> > nur mit numerischen Verfahren lösen kann?
>  
> Naja, wenn man nicht durch geschickte Faktorisierung etwas
> erreichen kann, bleiben einem ja nur die analytischen
> Methoden, Polynomnullstellen zu ermitteln. Das geht ja nur
> bis Grad 3, danach wirds eigentlich immer numerisch.
>  
> >  > Eine Nullstelle liegt übrigens bei x=1,498475855.

>  >  >  
> > Ja diese hatte ich mit Hilfe des Computers auch gefunden
>  
> Den habe ich auch genommen, da gerade kein Bierdeckel zur
> Hand war. ;-)
>  
> lg
>  reverend
>  

Danke nochmals für deine Hilfe

Gruß sandp


Bezug
        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Do 14.06.2012
Autor: fred97


> Hey,
>  hier ist meine Funktion, die ich gleich 0 gesetzt habe um
> die Nullstellen zu bestimmen
>  
> f(x) = [mm]x\* \bruch{x^{25}-1}{x-1}[/mm] - 74000 = 0
>  
> die Frage ist jetzt nur wie bekomme ich eine Lösung für
> x.
>  den ersten Teil kann ich als eine Summe schreiben, bringt
> mir das etwas?
>  x [mm]\* \bruch{x^{25}-1}{x-1}[/mm]  = [mm]\summe_{i=1}^{25} x^{i}[/mm]
>  
> Für Tipps wäre ich sehr dankbar.
>  mfg sandp


Die Funktion f hat auf [mm] \IR [/mm] genau eine Nullstelle ! Mit f meine ich die stetige Fotsetzung in den Punkt 1.

Zunächst sieht man dass f(x)<0 ist für x [mm] \le [/mm] 0.

Dann ist f auf [mm] \IR [/mm] differenzierbar und für x>0 ist f'(x)>0. f ist also auf (0, [mm] \infty) [/mm] sreng wachsend.



Es ist f(1)<0 und f(2) >0. Nach dem Zwischenwertsatz hat f in (1,2) eine Nullstelle.

Fazit: f hat auf [mm] \IR [/mm] genau eine Nullstelle.

ich bin mir im Klaren drüber, dass obige Methoden nicht für die Berufsschule geeignet sind.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de