www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Nullstellenbestimmung
Nullstellenbestimmung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:47 Do 13.09.2012
Autor: phanthomasw

Aufgabe
Zu bestimmen ist die Nullstelle der Funktion
[mm] f(x)=x*(p-Q*x^{2*\bruch{ln(r)}{ln(2)}})-FC [/mm]
Folgende Größen sind konstant und gegeben: Q>0, 0 [mm] \le [/mm] r [mm] \le1, [/mm] p>0, FC [mm] \ge [/mm] 0.

Zur Erklärung: Durch Gleichsetzen der Funktion mit Null kann der sogenannte Break Even Point eines Produkts bestimmt werden (Wie viele Einheiten x sind zu produzieren, um die Fixkosten FC zu decken, wobei ein Preis von p mit variablen Kosten zu verrechnen ist). Die variablen Kosten sind hier jedoch nicht konstant, sondern aufgrund einer sogenannten Lernkurve abnehmend mit zunehmender Menge x. Die variablen Kosten sind in obiger Gleichung gegeben durch [mm] Q*x^{2*\bruch{ln(r)}{ln(2)}} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie kann ich die Nullstelle dieser Funktion bestimmen? Wenn ich es richtig sehe, gibt es hier keine geschlossene Lösung, sondern ich muss ein Näherungsverfahren wie beispielsweise das Newton-Verfahren anwenden. Ist das richtig?
Gerne würde ich die Nullstellenbestimmung für verschiedene p in Excel umsetzen. Dort kann ich zwar mit dem Solver arbeiten, jedoch wäre eine geschlossene Lösung einfacher zu handhaben.

Vielen Dank für eure Hilfe!

        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Do 13.09.2012
Autor: Diophant

Hallo,

wie du selbst richtig vermutest: eine geschlossene Lösung ist nur für den Fall FC=0 möglich (der ja aber ausdrücklich mitberücksichtigt ist). Ansonsten heißt es tatsächlich, ein Näherungsverfahren anzuwenden, und hier ist Newton immer eine sehr gute Wahl. Aber du bräuchtest konrete Werte für die Parameter.


Gruß, Diophant

Bezug
                
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:43 Do 13.09.2012
Autor: phanthomasw

Vielen Dank für die sehr schnelle Antwort! Das hilft mir sehr weiter.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de