www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Nullstellenbestimmung bei Exp
Nullstellenbestimmung bei Exp < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung bei Exp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Fr 04.08.2006
Autor: tante_hilde

hi leute,

ich habe eine kurvendiskussion zu erledigen und bin nun bei den wendepunkten angekommen, aber jetzt komm ich absolut nicht mehr weiter!
[edit] du musst um den Exponenten geschweifte Klammern setzen, dann wird der Rest wieder "normal" geschrieben. [informix]

ich bin mir aber ganz ganz sicher, dass die rechnung bis hier stimmt!

[mm] f"(x)=e^{\left( 1+\bruch{1}{x}-\bruch{a}{4x²} \right)} * \bruch{8x³+x²(4-6a)-4ax+a²}{4x^6} [/mm]

die komplette zweite Klammer gehört nicht mehr hochgestellt, dass sieht man hier nur so undeutlich.
welche möglichkeiten gibt es denn, hier die nullstellen herauszufinden??
auf dem üblichen rationalen weg kommt man ja nicht wirklich voran.
wär toll wenn ihr mir helfen könntet :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Nullstellenbestimmung bei Exp: Nullteilerfreiheit von IR
Status: (Antwort) fertig Status 
Datum: 17:04 Fr 04.08.2006
Autor: mathmetzsch

Hallo,

das scheint mir ganz einfach zu sein. Der ganze Term [mm] e^{...} [/mm] kann nicht null werden, weil die e-Funktion gegen null konvergiert. Und ein Produkt wird null, wenn ein Faktor null ist. Der Term [mm] e^{...} [/mm] wird nicht null, also musst du den Bruch untersuchen. Du suchst also die Lösungen der Gleichung

[mm] 0=\bruch{8x³+x²(4-6a)-4ax+a²}{4x^6} [/mm] .

Das müsstest du hinbekommen, oder?

Viele Grüße
Daniel

Bezug
                
Bezug
Nullstellenbestimmung bei Exp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Fr 04.08.2006
Autor: tante_hilde

Ja gut leuchtet ein ;)

aber welche methoden gibt es denn dieses polynom zu lösen?
weil mit meiner mitternachtsformel komm ich nicht weit!
kann man den term 8x³+x²(4-6a)-4ax+a² vielleicht in ein produkt aufspalten und die dann gleichsetzen oder so?
es kann ja auch gut möglich sein, dass man nur näherungsweise werte als Nullstellen rausbekommt?!

grüße
steffi

Bezug
                        
Bezug
Nullstellenbestimmung bei Exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:45 Fr 04.08.2006
Autor: wimima0024

Hallo Steffi,

bist du dir sicher, dass du die 2te Ableitung auch richtig berechnet hast?

Um alle Nullstellen des Polynoms 3.Grades zu berechnen musst du ja für gewöhnlich die erste Nullstelle durch probieren herrausfinden. Dann aus dieser einen Linearfaktor bilden und das Gesamte Polynom durch diesen teilen. Dann erhälst du ein Polynom 2ten Grades und kannst mit der abc-Formel oder der pq-Formel die weiteren Nullstellen errechnen.

Ich habe mal probiert die erste Nullstelle zu finden.

Habe x = [mm] \bruch{3}{4} [/mm] a     eingesetzt es blieb jedoch noch ein Rest von [mm] \bruch{1}{4} a^2 [/mm]


Liebe Grüsse mima

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de