www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Nullstellenbestimmung von e...
Nullstellenbestimmung von e... < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung von e...: Frage
Status: (Frage) beantwortet Status 
Datum: 15:50 Do 10.02.2005
Autor: Psychonno

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Moinsen, Suche den Rechenweg für die Bestimmung der Nullstellen von

f(x)= [mm] e^{2x}-5e^x+4 [/mm]

komm da auf keinen grünen Zweig... wie kommt man auf  (2*ln2) und (0)??

bitte um Hilfe!

        
Bezug
Nullstellenbestimmung von e...: Substitution
Status: (Antwort) fertig Status 
Datum: 16:02 Do 10.02.2005
Autor: informix

Hallo Psychonno,
[willkommenmr]

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Moinsen, Suche den Rechenweg für die Bestimmung der
> Nullstellen von
>  
> f(x)= [mm]e^{2x}-5e^x+4[/mm]
>  
> komm da auf keinen grünen Zweig... wie kommt man auf  
> (2*ln2) und (0)??
>  

Hast du schon einmal an Substitution gedacht?

Setze einfach $z = [mm] e^x$ [/mm] und du erhältst eine quadratische Gleichung, die du bestimmt lösen kannst.
Und denke dran: [mm] $e^{2x} [/mm] = [mm] (e^x)^2$ [/mm] wegen der MBPotenzgesetze.
Wenn nicht, unsere MBMatheBank gibt dir MBhier Auskunft. ;-)


Bezug
                
Bezug
Nullstellenbestimmung von e...: Herzlichen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Do 10.02.2005
Autor: Psychonno

Wau, das hat perfekt geklappt!!

Bezug
        
Bezug
Nullstellenbestimmung von e...: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Do 10.02.2005
Autor: Paulus

Hallo Psychonno

[willkommenmr]

> Moinsen, kann mir mal Jemand den Rechenweg für die
> Nullstellen von
>  
> [mm]f(x)=e^{2x}-5e^x+4[/mm] geben.... Ich komm da auf keinen grünen
> Zweig!!

Aber wenigstens auf einen dürren Zweig?

>  
> Wie kommt man auf (2*ln2) und (0)??
>  

Ueberlege einfach: [mm] $e^{2x}=(e^{x})^2$ [/mm]

Substituiere somit: [mm] $z:=e^x$ [/mm]

Dann wird deine Gleichung zu

[mm] $z^2-5z+4=0$ [/mm]

Nach meiner Rechnung kommt man auf die zwei Lösungen
[mm] $z_1=1$ [/mm] und
[mm] $z_2=4$ [/mm]

Rücksubstitution liefert:

[mm] $e^{x_0}=1$ [/mm] und
[mm] $e^{x_1}=4$ [/mm]

Kommst du jetzt von deinem dürren Zweig auf einen grünen?

Mit lieben Grüssen

Paul

Bezug
        
Bezug
Nullstellenbestimmung von e...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 10.02.2005
Autor: Paulus

He, warum hast du die gleiche Frage 2 mal gepostet??? In Zukunft hat das den Rausschmiss aus dem Matheraum zur Folge!!

Paul

Bezug
                
Bezug
Nullstellenbestimmung von e...: nicht so heftig!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 Do 10.02.2005
Autor: informix

Hallo Paul,
> He, warum hast du die gleiche Frage 2 mal gepostet??? In
> Zukunft hat das den Rausschmiss aus dem Matheraum zur
> Folge!!
>  
> Paul

hast du dich vielleicht in meine Antwortzeit hineingeschlichen?
Ich kann keinen zweiten Strang sehen, wir posten alle im selben, ;-)
wie man am Zeitstempel ja sehen kann.... nicht für ungut [umarmen]


Bezug
                        
Bezug
Nullstellenbestimmung von e...: 2. Frage verschoben
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 Do 10.02.2005
Autor: Loddar

Hallo informix,

jetzt muß ich Paulus mal in Schutz nehmen!

Ich habe die 2. Frage versteckt und Paulus' Antwort hierher verschoben (nicht daß Paulus jetzt verzweifelt sucht ... ;-) )


Aber es wurde dieselbe Frage wirklich zweimal gepostet!!

Also:
@Psychonno: NICHT NOCHMAL, BITTE !!!


Gruß
Loddar


Bezug
                                
Bezug
Nullstellenbestimmung von e...: oh deshalb
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Do 10.02.2005
Autor: informix

Hallo Loddar,
> Hallo informix,
>  
> jetzt muß ich Paulus mal in Schutz nehmen!
>  
> Ich habe die 2. Frage versteckt und Paulus' Antwort hierher
> verschoben (nicht daß Paulus jetzt verzweifelt sucht ...
> ;-) )
>  
>
> Aber es wurde dieselbe Frage wirklich zweimal gepostet!!

danke für den Hinweis - inzwischen sind wir ja richtig schnell geworden! ;-)
@Paul: war keine Retourkutsche [sorry]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de