www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Nullvektor lin.unabhängig
Nullvektor lin.unabhängig < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullvektor lin.unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:52 Fr 08.10.2004
Autor: eini

Hallo Leute!

Hier meine zweite - und auch letzte - Frage heute, ganz mächtig einfach...

Also : Ist der Nullvektor immer linear unabhängig zu einem anderen ( wie sieht´s eigentlich bei mehreren anderen aus, genauso doch, oder ? ) ?

Meine Antwort : Wegen der Def. der linearen Unabhängigkeit, die ja lautet

[mm] \alpha\vec{a} [/mm] + [mm] \beta\vec{b} [/mm] = 0 nur dann, wenn es nur die triviale Lösung gibt, also [mm] \alpha [/mm] , [mm] \beta [/mm] = 0 , ist natürlich zwingend, daß wenn der eine der beiden Vektoren der Nullvektor ist, während der andere kein Nullvektor ist, dann für den Parameter vor dem Nullvektor ja beliebig viele Möglichkeiten [mm] \not= [/mm] 0 existieren, sodaß trotzdem  - vorausgesetzt der Parameter vor dem zweiten Vektor ist natürlich 0 - Null herauskommt ( blöd ausgedrückt, merke ich schon :-) , ist mal wieder spät...) .Das heißt, es existiert nicht nur die triviale Lösung, daraus folgt, die beiden Vektoren ( beliebiger Vektor [mm] \not=0 [/mm] und der Nullvektor ) sind linear abhängig.
Ich denke, das müßte stimmen, sorry für die so unpräzise Ausdrucksweise..

Das wär´s für heute, gute Nacht zusammen!

eini

        
Bezug
Nullvektor lin.unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 03:08 Fr 08.10.2004
Autor: Marc

Hallo eini,

> Hier meine zweite - und auch letzte - Frage heute, ganz
> mächtig einfach...
>  
> Also : Ist der Nullvektor immer linear unabhängig zu einem
> anderen ( wie sieht´s eigentlich bei mehreren anderen aus,
> genauso doch, oder ? ) ?

[ok]
  

> Meine Antwort : Wegen der Def. der linearen Unabhängigkeit,
> die ja lautet
>  
> [mm]\alpha\vec{a}[/mm] + [mm]\beta\vec{b}[/mm] = 0 nur dann, wenn es nur die
> triviale Lösung gibt, also [mm]\alpha[/mm] , [mm]\beta[/mm] = 0 , ist
> natürlich zwingend, daß wenn der eine der beiden Vektoren
> der Nullvektor ist, während der andere kein Nullvektor ist,
> dann für den Parameter vor dem Nullvektor ja beliebig viele
> Möglichkeiten [mm]\not=[/mm] 0 existieren, sodaß trotzdem  -
> vorausgesetzt der Parameter vor dem zweiten Vektor ist
> natürlich 0 - Null herauskommt ( blöd ausgedrückt, merke
> ich schon :-) , ist mal wieder spät...) .Das heißt, es
> existiert nicht nur die triviale Lösung, daraus folgt, die
> beiden Vektoren ( beliebiger Vektor [mm]\not=0[/mm] und der
> Nullvektor ) sind linear abhängig.
>  Ich denke, das müßte stimmen, sorry für die so unpräzise
> Ausdrucksweise..

Ich hab' sie trotzdem verstanden und sie enthält genau das schlagende Argument, dass eine Linearkombination
[mm] $\alpha_1*\vec{o}+\alpha_2*\vec{v_2}+\ldots+\alpha_n*\vec{v_n}$ [/mm]
für eine beliebige Wahl von [mm] $\alpha_1$ [/mm] und [mm] $\alpha_2=\ldots=\alpha_n=0$ [/mm] den Nullvektor ergibt, es also nicht nur die triviale Darstellung des Nullvektors gibt.

Gute Nacht,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de