Numerische Differentiation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 22:45 Di 02.05.2006 | Autor: | IrisL. |
Aufgabe | Das Newton-Interpolation-Polynom pn für eine Funktion f ∈ Cn+1[a,b], mit den Stützstellen
xi, i = 0,1,2, ... ,n, und xi ≠ xj für i ≠ j, genügt der Beziehung
f(x) pn(x) =f^(n+1) (ξ)/(n+1)!(x-x0)(x-x1).......(x-xn)
mit einem geeignetem x (ξ) aus dem kleinsten Intervall welches {x,x0,x1, ... ,xn} enthält.
Für ein festes gegebenes x ∈[a,b], kann die Differenz f(x) pn(x) aber auch in der Form
f(x) pn(x) = c(n+1) (x-x0)(x-x1).......(x-xn)
mit einer geeigneten n+1-ten dividierten Differenz cn+1 dargestellt werden (Beweis?).
Liegen die verschiedenen Stützstellen (x,x0,x1,x2, .... ,xn) hinreichend nahe beieinander,
dann eröffnen die obigen Gleichungen die Möglichkeit eine gute Näherung für die n+1-te
Ableitung von f zu bestimmen:
Durch die angenommene Lage der Stützstellen ( x x ≈ ξ ) muss dann gelten
f^(n+1) (x)/(n+1)!≅ cn+1
Dabei ergibt sich cn+1 aus dem Schema der dividierten Differenzen mit den Stützstellen
(x,x0,x1, ....,xn).
Berechne nach der oben angegebenen Methode Näherungen für die 1-5 Ableitungen der
Funktion f(x) = 1 + sin(3x) an der Stelle 0. Wählen Sie als Stützstellen z.B. {0, 0.00004,
0.00008, 0.00012, .. , 0.00016, 0.00020}. Was nun? |
Huhu!
Wahrscheinlich verängstigt mich die Länge der Aufgabe gemischt mit dem Hinweis (Beweis?) und den vielen Buchstaben und Zahlen.
Hab schon ein wenig über numerische Differentiation gelesen, aber solche Sachen sind mir dabei nicht untergekommen.
Ich bin mir ziemlich sicher, daß bei der Wahl der Stützstellen, so wie sie in der Aufgabe stehen, kein gutes Ergebnis rauskommen kann, da die Stützstellen zu dicht beieinander liegen. Aber wie kann ich das unter den gegeben Formeln "beweisen"?
Edit: Muß denn cn+1 eine Formel ergeben? Wäre ja sinnvoll, da ich ansonsten ja kaum den Wert der Ableitung an der Stelle x=0 berechnen kann. Aber bekomme ich denn durch das Schema der dividierten Differenzen eine Formel dafür?
Gruß
Iris
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 Do 04.05.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|