www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Komplexität & Berechenbarkeit" - Nummerierungen und Berechenbar
Nummerierungen und Berechenbar < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nummerierungen und Berechenbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Mo 16.01.2006
Autor: Flugzwerg

Aufgabe
Aufgabe:

Zeigen sie das die Menge [mm] \IN [/mm]        
  [mm] \nu_{\IQ}-rekursiv [/mm] ist

Halli Hallo!

Ich habe da mal wieder eine Frage. Diesmal zum ThemaNummerierungen und induzierte Berechenbarkeit.

Ich habe folgende Definition von [mm] \nu_{\IQ}: [/mm]

[mm] \IN \to \IQ, \nu_{\IQ}:=\bruch{i-j}{1+k} [/mm]  für alle [mm] i,j,k\in \IN [/mm]

Eine Definition für [mm] \nu [/mm] ist:

Es seien [mm] \nu: \subseteq \IN \to [/mm] M und (....) Nummerierungen.

eine Menge [mm] X\subseteq [/mm] M heisst v-rekursiv, gdw es eine berechenbare Funktion [mm] g:\subseteq \IN \to \IN [/mm] gibt mit

           1     falls [mm] \nu(i)\in [/mm] X
g(i) {                                             (für alle [mm] i\inDef(\nu)) [/mm] }
           0     (sonst)


Kann ich jetzt nicht einfach sagen:

[mm] \IN \subseteq \IQ [/mm] heisst [mm] \nu_{\IQ} [/mm] rekursiv, gdw es eine berechenbare Funktion :

g: [mm] \IN\to\IQ [/mm] gibt mit

               1 falls [mm] \nu_{\IQ}(i) \in\IN [/mm]
g(i,j,k)={                                          (für alle [mm] i,j,k\in Def(\nu_{\IQ}) [/mm]  }
               0  sonst

?

Ist das so korrekt? oder habe ich da mal wider einen denkfehler???


Danke für eure hilfe!
LG,

Nicole

        
Bezug
Nummerierungen und Berechenbar: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Di 17.01.2006
Autor: mathiash

Hallo Nicole,

ich wuerde sagen, Du liegst genau richtig. Laut der von Dir gegebenen Definitionen
ist die Existenz eines solchen g genau das, was Du zeigen musst.

Du kannst dabei jetzt ja schon benutzen, dass die Funktionen <....> und ihre Projektionen
berechenbar sind.

Nur zur Notation: es sollte sicherlich

[mm] \nu_{\IQ}() [/mm] lauten, oder ? Denn Du hast ja die drei Zahlen, die Dir die
rationale Zahl [mm] \frac{i-j}{1+k} [/mm] definieren.

Dir weiter viel Erfolg !!!

Viele Gruesse,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de