www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - O-Notation
O-Notation < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

O-Notation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Di 15.01.2013
Autor: bandchef

Aufgabe
Kein konkrete Aufgabe.


Hi Leute!

Wenn ich nach einer Betrachtung durch das Master-Theorem sowas stehen haben wie bspw

$n [mm] \cdot [/mm] log(n) [mm] \in O\left( n^{log_2(3) - \epsilon} \right)$ [/mm] mit passendem [mm] $\epsilon [/mm] > 0$

dann weiß ich nie ob nun $n [mm] \cdot [/mm] log(n)$ darin enthalten ist oder nicht. Meiner Ansicht nach nicht, weil das $n$ durch den multiplikativen Anteil $log(n)$ wesentlich kleiner wächst als die obere Grenze O, auch wenn ich mit einem passenden [mm] $\epsilon \approx [/mm] 0,585$ auf [mm] $n^1$ [/mm] kommen würde. Da das O-Kalkül ja nur die höchste Potenz betrachtet, wäre es ja doch darin enthalten, oder?

Laut meiner Lösung gilt aber: $n [mm] \cdot [/mm] log(n) [mm] \notin O\left( n^{log_2(3) - \epsilon} \right)$ [/mm] mit passendem [mm] $\epsilon [/mm] > 0$

Gibt es da nun eine Vorgehensweise wie man das besser erkennen kann? Oder wie ich denke, damit ich solche Fälle erkenne?

        
Bezug
O-Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Di 15.01.2013
Autor: Helbig

Hallo bandchef,

> Wenn ich nach einer Betrachtung durch das Master-Theorem
> sowas stehen haben wie bspw
>  
> [mm]n \cdot log(n) \in O\left( n^{log_2(3) - \epsilon} \right)[/mm]
> mit passendem [mm]\epsilon > 0[/mm]
>  
> dann weiß ich nie ob nun [mm]n \cdot log(n)[/mm] darin enthalten
> ist oder nicht. Meiner Ansicht nach nicht, weil das [mm]n[/mm] durch
> den multiplikativen Anteil [mm]log(n)[/mm] wesentlich kleiner
> wächst als die obere Grenze O, auch wenn ich mit einem
> passenden [mm]\epsilon \approx 0,585[/mm] auf [mm]n^1[/mm] kommen würde. Da
> das O-Kalkül ja nur die höchste Potenz betrachtet, wäre
> es ja doch darin enthalten, oder?

Halte Dich lieber an die Definition. Ich stelle mir gerade vor, wie das O-Kalkül die Potenz betrachtet :-)

>  
> Laut meiner Lösung gilt aber: [mm]n \cdot log(n) \notin O\left( n^{log_2(3) - \epsilon} \right)[/mm]
> mit passendem [mm]\epsilon > 0[/mm]

Das hängt von Deinem "passenden" [mm] $\epsilon$ [/mm] ab!

Setzen wir mal [mm] $\alpha [/mm] = [mm] \log_2 [/mm] 3 - [mm] \epsilon\,,$ [/mm] um die Formeln etwas übersichtlicher zu machen.

Dann haben wir:
    [mm] $n\log [/mm] n [mm] \in O(n^\alpha)\quad\gdw\quad \limsup {n\log n \over n^\alpha} [/mm] < [mm] \infty \quad\gdw\quad \lim {\log n \over n^{\alpha - 1} }< \infty\,.$ [/mm]

Nun wissen wir aus der Analysis, daß letzteres genau dann der Fall ist, wenn [mm] $\alpha [/mm] - 1 > 0$ ist, bzw. wenn [mm] $\epsilon [/mm] < [mm] \log_2 [/mm] 3 - 1$ ist. Wegen [mm] $\log_2 [/mm] 3 > 1$ gibt es so ein positives [mm] $\epsilon\,.$ [/mm] Wenn Du allerdings [mm] $\epsilon [/mm] = [mm] \log_2 [/mm] 3 - 1$ setzt, ist [mm] $\alpha [/mm] = 1$, und [mm] $n\log [/mm] n [mm] \notin O(n^{\log_2 3 - \epsilon})\,.$ [/mm]

>  
> Gibt es da nun eine Vorgehensweise wie man das besser
> erkennen kann? Oder wie ich denke, damit ich solche Fälle
> erkenne?

Ja. Schlicht nach Definition argumentieren und Dein Wissen aus der Ana1 anwenden.

Gruß,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de