www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - ON-Basis symmetrischer Matrize
ON-Basis symmetrischer Matrize < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ON-Basis symmetrischer Matrize: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Sa 29.04.2006
Autor: schilli

Hallo Leute.
Häne in Lin. Algebra II zur Zeit etwas hinterher, für euch ist das sicherlich eine Kindergarten-Aufgabe. Wäre nett, wenn mir jemand den Lösungsweg aufzeigen würde.
Und zwar muss ich die Orthonormalbasis einer symmetrischen 4,4-Matrix berechnen. (Konkrete Matrix: 1.Spalte: 2 1 0 0, 2.Spalte: 1 2 1 0, 3.Spalte: 0 1 2 1, 4.Spalte: 0 0 1 2 .
Danke
Matthias

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
ON-Basis symmetrischer Matrize: Schmidtsche O-Normalisierung
Status: (Antwort) fertig Status 
Datum: 16:06 Sa 29.04.2006
Autor: Infinit

Hallo Matthias,
das Ganze ist leider keine Kindergartenaufgabe und man muss schon etwas Grips reinstecken. Schau doch mal nach, ob Du in Deinem Skript etwas zu einem Schmidtschen Orthonomalisierungsverfahren findest, dies ist die gängige Methode, um sich aus einem Vektorraum eine ON-Basis zu erzeugen. Die Idee dabei ist, einen der gegebenen Vektoren als eine Komponente der Orthonormalbasis zu nehmen, und mit Hilfe des Skalarproduktes sich die restlichen Komponenten zu bestimmen.
Ist $$ [mm] \{ a_1, a_2, ..., a_n\} [/mm] $$ eine Basis des Vektorraums, so erzeugt man hieraus ein Orthogonalsystem [mm] $$\{b_1, b_2, ..., b_n\} [/mm] $$ mit
$$ [mm] b_1 [/mm] = [mm] a_1 [/mm] $$ und $$ [mm] b_k [/mm] = [mm] a_k [/mm] - [mm] \sum_{i=1}^{k-1} \bruch{(a_k, b_i)}{(b_i, b_i)} \cdot b_i [/mm] $$
für k = 2,...,n. Hierbei bezeichnet $$ [mm] (a_k, b_i) [/mm] $$ das Skalarprodukt zwischen den Vektoren [mm] $a_k$ [/mm] und [mm] $b_i$. [/mm]
Danach muss man nur noch die entstandenen Vektoren normieren und hat die Orthonormalbasis.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de