www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - O Notation
O Notation < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

O Notation: O Notation, Informatik II
Status: (Frage) beantwortet Status 
Datum: 12:18 Sa 12.04.2008
Autor: wolle238

Aufgabe
Gegeben seien die Funktionen
• [mm] f_1 (n) = 2n + 5 \, log \, n [/mm]
• [mm] f_2 (n) = 3n \cdot log n + 4 \cdot \wurzel{n} [/mm]
• [mm] f_3 (n) = 7n^2 \cdot \wurzel{n} [/mm]

• [mm] g_1 (n) = \wurzel{n} [/mm]
• [mm] g_2 (n) = n [/mm]
• [mm] g_3 (n) = n \, log \, n [/mm]
• [mm] g_4 (n) = n^2 [/mm]

Geben Sie (ohne Beweis) die Paare (i, j) an, für die [mm] f_i (n) \in O(g_j (n)) [/mm] gilt. Verwenden Sie hierbei die in der Vorlesung erwähnte Verallgemeinerung der Notation O(f) für [mm] f : \IN \rightarrow \IR [/mm]!

Hallo alle samt!!
Ich hab mal eine Frage zur der oben gestellten Aufgabe! Entweder habe ich die Aufgabe oder die O - Notation nicht verstanden. Als Definition für O-Notation habe ich mir aufgeschrieben:
O(f) := Alle Funktionen, die maximal so schnell wachsen wie die Funktion f.
Das heißt doch, dass [mm] g \in O(f) [/mm] auf jeden Fall langsamer, bzw. maximal genau so schnell wie f wächst (also immer unter dem Graphen von f bleibt), oder??
Weiter stand auf der Folie: [mm] O(f) = {g : \IN \rightarrow \IN | [/mm] Es existieren [mm] c_1 > 0 [/mm] und [mm] c_2 > 0 [/mm] für alle [mm] n \in \IN : g(n) \le c_1 \cdot f(n) + c_2} [/mm]
(http://www-wi.uni-muenster.de/pi/lehre/ss08/info2/folien/info2k1.pdf, Folie 6)

Ich habe mir die Funktionen mal gezeichnet. Bei diesen Aufgaben (http://www.wi.uni-muenster.de/pi/lehre/ss08/info2/uebungen/Uebung01.pdf; kompletter Aufgabenzettel) sollen die f-Funktionen ja maximal so schnell wachen wie die g-Funktionen (weil [mm] f_i (n) \in O(g_j (n)) [/mm] sein soll), oder sehe ich das falsch?? Aber beim Zeichnen hat sich ergeben, dass alle f-Funktionen schneller als die g-Funktionen! Irgendwie läuft das alles mal nicht! :(
Ich hoffe mir kann einer helfen!!
MfG und schonmal vielen Dank im Voraus!
Wolle

        
Bezug
O Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 So 13.04.2008
Autor: Abelscherhesse

So findet man also seine Kommilitonen wieder, hallo J. ;D

Also, pass auf.

g [mm] \in [/mm] O(f(n)) bedeutet nur, dass du entweder für alle n sagen kannst g(n) [mm] \le [/mm] a [mm] \times [/mm] f(n) + b
oder
ab einem bestimmten N sind alle g(n) [mm] \le [/mm] a [mm] \times [/mm] f(n)

Wobei a und b halt irgendwelche Konstanten sind. Das heißt, wenn du f multiplizierts (also die Steigung konstant vergrößerst) oder etwas addierst (also die ganze Funktion "höher legst") dann ist f größer/gleicht g.

Nimm zum Beuspiel f(n)=n und g(n) = 10.
Es gilt g(n) [mm] \le [/mm] f(n) + 11 oder ab n=10 gilt g(n) [mm] \le [/mm] f(n) (je nach dem welche Notation du bevorzugst).
Das geht auch so direkt aus dem Skript zum Übungszettel hervor.

Du musst eigentlich immer nur den Teil der Funktion mit dem heftigsten Wachstum betrachten. Zum Beispiel gilt für jedes Polynom vierten Gerades (auch wenn es 100000000000000 * [mm] n^{4} [/mm] + 100000000000000 * [mm] n^{3} [/mm] + 100000000000000 * [mm] n^{2} [/mm] + 100000000000000 * n + 100000000000000 ist), dass es in [mm] O(n^{4}) [/mm] liegt.

So und den Rest schaffst du alleine!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de