www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Oberfläche Parabolid
Oberfläche Parabolid < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberfläche Parabolid: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Fr 20.03.2015
Autor: KilaZ

Aufgabe
Oberfläche des Parabolids [mm] z=9-x^2-y^2 [/mm]

Hi,

ich soll oben genannte Oberfläche berechnen. Folgende Parametrisierung habe ich berechnet:
q(z,v) = [mm] \vektor{\wurzel{9-z} * cos(v) \\ \wurzel{9-z} * sin(v) \\ z} [/mm]

Das Oberflächenintegral lässt sich lösen, aber gibt es eine bessere, effizientere Parametrisierung welche mir das Rechnen erleichtert?

Gruß

        
Bezug
Oberfläche Parabolid: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Sa 21.03.2015
Autor: leduart

Hallo
ich würde mit x=u*cos(v), y=u*sin(v) [mm] z=9-u^2 [/mm] arbeiten, ob das beim integrieren einfacher wird  weiss ich nicht
Wenn es nur um die Oberfäche geht, kannst du das P ja auch umdrehen und von 0 bis 3 gehen lassen, dann ist es noch einfacher.
Gruß leduart

Bezug
                
Bezug
Oberfläche Parabolid: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Sa 21.03.2015
Autor: KilaZ

Hi,

ok, vielen dank. Noch eine Frage bezüglich der Rechnung

Aus der Funktion aus der Angabe [mm] z=9-x^z-y^2 [/mm] bekomme ich ja die Parametrisierung. Doch wo muss ich das Vektorfeld F berücksichtigen?
[mm] F=\vektor{-y \\ x \\z} [/mm]

Direkt bei der Parametrisierung? Also
[mm] x(u,v)=\vektor{-u*sin(v) \\ u*cos(v) \\9-u^2} [/mm]
oder wo sonst?

MfG


Bezug
                        
Bezug
Oberfläche Parabolid: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Sa 21.03.2015
Autor: leduart

Hallo
oben sagtest du , due willst die oberfl##che berechnen, jetz den Fluss des Vektorfeldes oder was genau
wenn das zweite, dann ja.
Gruß ledum

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de