www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Oberfläche eines Hyperboloids?
Oberfläche eines Hyperboloids? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberfläche eines Hyperboloids?: Lösungsüberprüfung
Status: (Frage) beantwortet Status 
Datum: 14:07 Di 08.03.2005
Autor: OBdA-trivial

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute,
es geht um die Berechnung der Oberfläche eines Hyperboloids mit der Vorgabe [mm] x^{2} + y^{2} < 1 [/mm] und [mm] z = x * y [/mm] ! Ich habe das ganze über die Parametrisierung [mm] (u,v) \right\} \to (u,v,u*v) [/mm] und anschließende Transformation  mittels [mm] (r,\varphi) \right\} \to (r * \cos \varphi, r * \sin \varphi) [/mm] gelöst. Probleme hat mir bereitet, die stetige Differenzierbarkeit bei der Umkehrfunktion der Transformationsfunktion zu zeigen(die Trafo-Funktion muss ja ein Diffeomorphismus sein). Außerdem macht mich meine Lösung ein wenig stutzig: [mm] Vol_2 = \bruch{2}{3} * \pi * ( \wurzel{8} - 1) [/mm] !
Könnte das von euch mal jemand überprüfen?

Mit parametrisierten Grüßen
Ralf

        
Bezug
Oberfläche eines Hyperboloids?: Bestätigung
Status: (Antwort) fertig Status 
Datum: 20:00 Mi 09.03.2005
Autor: MathePower

Hallo,

ich habe das nachgerechnet und das Ergebnis stimmt.

Ich habe die folgende Formel für die Oberfläche benutzt:

[mm]A_{0} \; = \;\int\limits_{0}^{2\pi } {\int\limits_{0}^{1} {\sqrt {r^{2} \; + \;r^{2} \;f_{r}^{2} \; + \;f_\varphi ^{2} } } } \;dr\;d\varphi [/mm]

Für die Berechung der Ableitungen [mm]f_{r}[/mm] und [mm]f_{\varphi}[/mm] verwende folgende Funktion:

[mm]f\left( {r,\;\varphi } \right)\; = \;f\left( {x\left( {r,\;\varphi } \right),\;y\left( {r,\;\varphi } \right)} \right)[/mm]

Leite dann diese Gleichung nach [mm]r[/mm] bzw. [mm]\varphi[/mm] ab.

Gruß
MathePower


Bezug
                
Bezug
Oberfläche eines Hyperboloids?: Dankeschön!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Do 10.03.2005
Autor: OBdA-trivial

Wunderbar. Dankeschön! Deine Formel hilft mir sicherlich bei der Überprüfung nur rechnen sollte ich das ganze auch mittels Parametrisierung und Transformationssatz können, denn darum dreht sich das Thema bei Lebesgue und Co in AnaIII. Ich werd mal schauen wie du auf die genannte Formel für das Integral kommst. Vielleicht hilft mir das ja auch bei der Klausur schnell eine Lösung zu finden. Im Endeffekt hast du doch nur statt Parametrisierung eine Funktion als Darstellung des Hyperboloids gewählt und dort eine Transformation durchgeführt, richtig???
Gruß Ralf

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de