Oberflächenspannung < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:56 Mo 10.12.2007 | Autor: | Sara66 |
Aufgabe | In einem fest verschlossenem Wassertank befinden sich am Boden zwei kleine Luftbläschen. An der Oberseite des Tanks der Höhe h hat der hydrostatische Druck den Wert [mm] p_{0}. [/mm] Der Rasius der beiden Bläschen ist jeweils [mm] R_{0}. [/mm] Die Oberflächenspannung der Bläschen ist sigma. Wie ändert sich der Druck in dem Tank, wenn die beiden Bläschen sich zu einer Blase mit Radius [mm] R_{1} [/mm] verbinden?
Hinweise:
Der Prozess ist isotherm, d.h. eine Temperaturveränderung wird nicht vollzogen
Für die Blasen gilt: [mm] R_{0}, R_{1}<
|
Hallo allerseits!
Ich sitze nun seit geraumer Zeit an dieser Aufgabe und komme einfach auf keinen Ansatz.
Das einzige was ich mir überlegt habe, ist, dass bei zusammenschluß von den zwei Bläschen zu einer Blase der Druck sinkt. Da die Oberfläche der neuen größeren Blase ja geringer als die der zwei Blasen ist und somit die Oberflächenspannung geringer ist. Der radius der Blase müsste ja [mm] \wurzel[3]{2} [/mm] sein.
Nun habe ich aber keine ahnung, wie ich das ganze mit formeln und so weiter niederschreiben soll und besonders welche Formel ich dort anwenden kann.
Würde mich über einen kleinen Tipp sehr freuen!!
Danke schon mal!
Vg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:00 Do 13.12.2007 | Autor: | rainerS |
Hallo!
> In einem fest verschlossenem Wassertank befinden sich am
> Boden zwei kleine Luftbläschen. An der Oberseite des Tanks
> der Höhe h hat der hydrostatische Druck den Wert [mm]p_{0}.[/mm] Der
> Rasius der beiden Bläschen ist jeweils [mm]R_{0}.[/mm] Die
> Oberflächenspannung der Bläschen ist sigma. Wie ändert sich
> der Druck in dem Tank, wenn die beiden Bläschen sich zu
> einer Blase mit Radius [mm]R_{1}[/mm] verbinden?
>
> Hinweise:
> Der Prozess ist isotherm, d.h. eine Temperaturveränderung
> wird nicht vollzogen
> Für die Blasen gilt: [mm]R_{0}, R_{1}<
>
>
> Hallo allerseits!
> Ich sitze nun seit geraumer Zeit an dieser Aufgabe und
> komme einfach auf keinen Ansatz.
> Das einzige was ich mir überlegt habe, ist, dass bei
> zusammenschluß von den zwei Bläschen zu einer Blase der
> Druck sinkt. Da die Oberfläche der neuen größeren Blase ja
> geringer als die der zwei Blasen ist und somit die
> Oberflächenspannung geringer ist. Der radius der Blase
> müsste ja [mm]\wurzel[3]{2}[/mm] sein.
Nicht unbedingt. Da der Prozess isotherm ist, ist nach Boyle-Mariotte im Inneren der Bläschen das Produkt aus Druck und Volumen konstant, aber nicht jede Größe für sich.
Ich würde so vorgehen:
1. Berechne den Druck am Boden des Tanks.
2. Berechne den Druck im Inneren der Bläschen. Das darfst du getrennt betrachten, weil [mm]R_{0}, R_{1}<
3. Da du den Radius kennst, kannst du das Produkt aus Luftdruck und Volumen für die Bläschen berechnen.
Jetzt nimm an, dass nach der Verbindung der Bläschen der Druck an der Oberseite des Tanks den Wert [mm]p_1[/mm] hat, wiederhole die Rechnung und wende Boyle-Mariotte an.
Viele Grüße
Rainer
|
|
|
|