www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Oberintegral Ungleichung
Oberintegral Ungleichung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberintegral Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Mi 19.10.2011
Autor: sissenge

Aufgabe
seien f,g .[a,b] beschränkte Funktionen. Zeigen Sie: Für das Oberintegral gilt die Ungleichung:

O[a,b] (f+g) [mm] \le [/mm] O[a,b] (f(x)) + O[a,b] (g(x))


Also jetzt habe ich mir zunächst mal die Definitionen des Oberintegrals hin geschrieben
[mm] *\integral_{a}^{b}{f(x) dx}:= inf{\integral_{a}^{b}{\phi(x) dx : \phi \in T[a,b] mit \phi \ge f }} [/mm]

und das habe ich dann eben auch für g(x) und für (f+g)(x) aufgestellt.
Jetzt habe ich im Internet gefunden, dass dann das integral von [mm] \phi \le [/mm] Oberintegral von f ist. Könnte mir jemand diesen schritt bitte erklären.
Was heißt es denn wenn eine Funktion größer als eine andere ist?

        
Bezug
Oberintegral Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Mi 19.10.2011
Autor: Helbig


> Was heißt es denn wenn eine Funktion größer als eine
> andere ist?  

Mit [mm] $f\ge \phi$ [/mm] meint man einfach [mm] $f(x)\ge\phi(x)$ [/mm] für alle [mm] $x\in[a,b]$. [/mm] Ebenso bedeutet [mm] $f\le\phi$, [/mm] daß [mm] $f(x)\le\phi(x)$ [/mm] für alle [mm] $x\in[a,b]$ [/mm] ist. Nun beachte die Definition des Infimums als größte untere Schranke einer unten beschränkten Menge für gegeignet gewählte Mengen, um die Ungleichung der Oberintegrale herzuleiten.

OK?

viel Erfolg,
Wolfgang


Bezug
                
Bezug
Oberintegral Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Sa 22.10.2011
Autor: sissenge

Aber wie kann dann das Integral der größeren FUnktion kleiner als das Integral der kleiner Funktion sein?? Ich kann mir das nicht so richtig vorstellen, oder ist der ANsatz den ich im Internet gefunden habe falsch:

es gibt eine FUnktion [mm] \phi [/mm] die größer ist als f
es gibt eine Funktion [mm] \gamma [/mm] die größer ist als g

das Integral von [mm] \phi [/mm] ist kleiner als das Oberintegral von f
das Integral von [mm] \gamma [/mm] ist kleiner als das Oberintegral von g

das Integral von [mm] \phi [/mm] + [mm] \gamma [/mm] ist größer als das Oberintegral von f+g (WIESO???)



Bezug
                        
Bezug
Oberintegral Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Sa 22.10.2011
Autor: Helbig


> Aber wie kann dann das Integral der größeren FUnktion
> kleiner als das Integral der kleiner Funktion sein?? Ich
> kann mir das nicht so richtig vorstellen, oder ist der
> ANsatz den ich im Internet gefunden habe falsch:

Du hast völlig recht! Das Integral der größeren Funktion ist natürlich größer als das Integral der kleineren Funktion.
Im folgenden lasse ich die Integrationsgrenzen [mm]a, b[/mm] mal weg.
Das Oberintegral [mm] $\int^- f\,dx$ [/mm] von [mm]f[/mm] ist das Infimum aller Integrale aller Treppenfunktionen [mm] $\phi\ge [/mm] f$. Und das heißt, zu jedem [mm] $\epsilon>0$ [/mm] gibt es eine Treppenfunktion [mm] $\phi\ge [/mm] f$, so daß das [mm] $\int \phi \,dx [/mm] < [mm] \int^- f\, dx+\epsilon$. [/mm] Genauso gibt es ein [mm] $\gamma \ge [/mm] g$ mit [mm] $\int \gamma \,dx <\int^- g\, [/mm] dx [mm] +\epsilon$. [/mm]

Nun ist [mm] $\phi+\gamma$ [/mm] eine Treppenfunktion mit [mm] $\phi [/mm] + [mm] \gamma \ge [/mm] f+g$ und wir erhalten:

[mm]\begin{matrix} \int^- f+g\,dx &\le& \int \phi+\gamma\, dx \\ \ &=& \int \phi\, dx + \int \gamma \,dx \\ \ &<& \int^-f\, dx +\epsilon + \int^-g \,dx + \epsilon \\ \ &=&\int^- f \,dx + \int^- g \,dx + 2\epsilon \end{matrix} [/mm]

Da [mm] $\epsilon$ [/mm] beliebig war, folgt

[mm] $\int^- f+g\, [/mm] dx [mm] \le \int^- [/mm] f [mm] \,dx [/mm] + [mm] \int^- [/mm] g [mm] \,dx$. [/mm]

Hierbei haben wir
[mm] $\int \phi [/mm] + [mm] \gamma\,dx= \int \phi\,dx [/mm] + [mm] \int \gamma\,dx$ [/mm]
benutzt.

Dies mußt Du eventuell noch zeigen.

viel Erfolg,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de