www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Offene/Abgeschlossene Mengen
Offene/Abgeschlossene Mengen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offene/Abgeschlossene Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Di 27.11.2007
Autor: Pawelos

HI

Also ich muss bei einer Aufgabe entscheiden welche Teilmengen offen / abgeschlossen in A bzw. in R² sind.
A:={(x,y) [mm] \in [/mm] R² : 1<=x<3}

[mm] \emptyset [/mm]    Beides in R² und auch in A
A    auf jeden Fall beides in A und ich denke abgeschlossen in R²!?
{(1,3)}     Also Punkte sind offen oder? demnach also offen in R²
das sind nur die ersten paar.

Meine Frage ist eigentlich wie kann man das prüfen?

U [mm] \subset [/mm] A ist offen wenn es eine offene teilmenge S in in R² existiert so dass A [mm] \cap [/mm] S = U. Richtig?

U ist abgeschlossen falls [mm] A\U [/mm] offen. Richtig

Gilt das auch umgekehrt? Eher nicht oder?

gibts noch mehr solche Sachen zum überprüfen???

Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Offene/Abgeschlossene Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Mi 28.11.2007
Autor: komduck

A ist nicht abgeschlossen in [mm] R^2 [/mm]
Punkte sind abgeschlossen.
>U $ [mm] \subset [/mm] $ A ist offen wenn es eine offene teilmenge S in in R² existiert so dass A $ [mm] \cap [/mm] $ S = U. Richtig?
Du mußt ganz genau sagen wann du offen in A und wann offen in [mm] R^2 [/mm] meinst.
>U ist abgeschlossen falls $ [mm] A\U [/mm] $ offen. Richtig?
Nein das ist aber ein Anzeigeproblem
du mußt setminus verwenden:
U ist abgeschlossen in A falls $ A [mm] \setminus [/mm] U $ offen in A.
U ist offen in A falls $ A [mm] \setminus [/mm] U $ abgeschlossen in A.

komduck



Bezug
                
Bezug
Offene/Abgeschlossene Mengen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:19 Mi 28.11.2007
Autor: Pawelos


>  Punkte sind abgeschlossen.

Ach stimmt aber Punkte im sinne von n [mm] \in \IN [/mm] weil die Zahl(punkt) dann ein offener intervall ist!? Das stimmt doch oder? Hab ich dann damit verwechselt.

>  >U [mm]\subset[/mm] A ist offen wenn es eine offene teilmenge S in
> in R² existiert so dass A [mm]\cap[/mm] S = U. Richtig?
> Du mußt ganz genau sagen wann du offen in A und wann offen
> in [mm]R^2[/mm] meinst.

In A meinte ich hier


>  U ist abgeschlossen in A falls [mm]A \setminus U[/mm] offen in A.
>  U ist offen in A falls [mm]A \setminus U[/mm] abgeschlossen in A.

ja genau das wollte ich auch schreiben aber irgendwie hab ich da nur blödsinn geschrieben!

Noch was {1} [mm] \times \IR [/mm] ist das offen In [mm] \IR²? [/mm] in A? wenn ich vorhin recht hatte mit dem Intervall ist {1} offen in [mm] \IR [/mm] und [mm] \IR [/mm] ist ja auch offen. So müsste ja das kreutzprodukt auch offen sein in [mm] \IR²!? [/mm] Und dann auch in A!

Bezug
                        
Bezug
Offene/Abgeschlossene Mengen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 Fr 30.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de