www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Offene Menge von Matrizen
Offene Menge von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offene Menge von Matrizen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:08 Mi 23.06.2010
Autor: Marie_

Aufgabe
Gegen sei der Raum der reellen quadratischen Matrizen [mm] \IR^{n \times n}. [/mm]
Sei [mm] \gamma [/mm] die Menge aller invertierbaren Matrizen, also [mm] \gamma [/mm] := {A [mm] \in \IR^{n \times n} [/mm] | det(A) [mm] \not= [/mm] 0}.
Zeigen Sie, dass die Menge [mm] \gamma [/mm] offen ist.

Hallo,

ich weiß leider bei der oben stehenden Aufgabe keinen vernünftigen Ansatz. Nach der Definition von einer offenen Menge gilt ja, dass ein jeder Punkt ein innerer Punkt sein muss (d.h. es muss zu jeder invertierbaren Matrix eine Umgebung geben, in der wiederum eine invertierbare Matrix ist). Jedoch glaube ich, dass man die Offenheit durch andere Überlegungen zeigen muss.

Vielen Dank für die Hilfe!

Liebe Grüße
Marie

        
Bezug
Offene Menge von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Mi 23.06.2010
Autor: cycore

Hallo, also ich weiß ja nicht aus welchem zusammenhang das bei euch hervorgeht...da gibt es ja sicherlich mehrere möglichkeiten dies zu zeigen...
würde das (wenn dein vorwissen das hergibt) folgendermaßen machen:
die determinante ist stetig (wenn das nicht bekannt ist ist das offensichtlich, wenn man sich die leibnizformel anschaut)...daher sind urbilder offener mengen offen und eine reelle matrix ist genau dann invertierbar, wenn ihre determinante nicht verschwindet...somit ist [mm] \gamma=det^{-1}{\IR\backslash{\{0\}}}. [/mm]
[mm] \IR\backslash{\{0\}} [/mm] ist offen, somit auch das urbild, also gerade dein [mm] \gamma. [/mm]

hoffe das hilft, schönen tag noch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de