www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Offene Mengen in metr. Räumen
Offene Mengen in metr. Räumen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offene Mengen in metr. Räumen: Frage / Beispiel
Status: (Frage) beantwortet Status 
Datum: 14:11 Di 23.01.2007
Autor: green-bubble

Aufgabe
Der Durchschnitt von abzählbar vielen offenen Mengen ist wieder offen.

Huhu,

ich habe mal wieder eine Frage...also, ich soll die o.g. Aussage durch ein Beispiel bestätigen. Nun habe ich eine Frage zu den Beispielen und würde mich freuen, wenn ihr mir weiterhelfen könntet.

i) Durchschnitt abzählbar vieler offener Mengen ist offen.
Ich habe das Beispiel: Sei [mm] U_n [/mm] = ] [mm] -\bruch{1}{n}, 1+\bruch{1}{n}[ [/mm] mit [mm] n\in \IN, [/mm] n= 1,2,...eine offene Menge (Ist das richtig?).
Dann ist [mm] \bigcap_{i=1}^{10} U_n [/mm] =  [mm] \bigcap_{i=1}^{10} [/mm] ] [mm] -\bruch{1}{n},1+\bruch{1}{n}[ [/mm] = [mm] ]-\bruch{1}{10}, \bruch{11}{10}[ [/mm] ist auch offen?

Habt ihr vielleicht noch ein anderes Beispiel, was den Satz oben bestätigt.
Über Hilfe freue ich mich.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Offene Mengen in metr. Räumen: nicht einverstanden
Status: (Antwort) fertig Status 
Datum: 14:27 Di 23.01.2007
Autor: statler


> Der Durchschnitt von abzählbar vielen offenen Mengen ist
> wieder offen.

Mahlzeit!

> ich habe mal wieder eine Frage...also, ich soll die o.g.
> Aussage durch ein Beispiel bestätigen. Nun habe ich eine
> Frage zu den Beispielen und würde mich freuen, wenn ihr mir
> weiterhelfen könntet.
>  
> i) Durchschnitt abzählbar vieler offener Mengen ist offen.

Ich kenne das so, daß abzählbar bedeutet 'endlich viele' oder 'abzählbar unendlich viele', und dann stimmt das nicht.

>  Ich habe das Beispiel: Sei [mm]U_n[/mm] = ] [mm]-\bruch{1}{n}, 1+\bruch{1}{n}[[/mm]
> mit [mm]n\in \IN,[/mm] n= 1,2,...eine offene Menge (Ist das
> richtig?).

Das ist richtig!

>  Dann ist [mm]\bigcap_{i=1}^{10} U_n[/mm] =  [mm]\bigcap_{i=1}^{10}[/mm] ]
> [mm]-\bruch{1}{n},1+\bruch{1}{n}[[/mm] = [mm]]-\bruch{1}{10}, \bruch{11}{10}[[/mm]
> ist auch offen?

Das ist auch richtig, aber es ist ein endlicher Durchschnitt! Bilde den Durchschnitt doch mal für alle natürlichen Zahlen, was passiert dann?

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Offene Mengen in metr. Räumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Di 23.01.2007
Autor: green-bubble

Hm, also versteh ich jetzt auch nicht so, es sei denn ich soll das so machen:

[mm] \bigcap_{i=1}^{n} ]-\bruch{1}{n},1+\bruch{1}{n}[... [/mm]

???

Und was nu?


Und meine zweite Frage ist:

ii) Durchschnitt unendlich vieler offener Mengen ist nicht wieder offen. Beispiel:

Sei [mm] U_n=]-\bruch{1}{n},\bruch{1}{n}[. [/mm] Dann ist [mm] \bigcap_{i=1}^{\infty} ]-\bruch{1}{n},\bruch{1}{n}[ [/mm] = {0} nicht offen, aber abgeschlossen, oder? Stimmt dieses Beispiel wenigstens?

Bezug
                        
Bezug
Offene Mengen in metr. Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:39 Mi 24.01.2007
Autor: statler


> Hm, also versteh ich jetzt auch nicht so, es sei denn ich
> soll das so machen:
>  
> [mm]\bigcap_{i=1}^{n} ]-\bruch{1}{n},1+\bruch{1}{n}[...[/mm]
>  

Das meinst du wahrscheinlich nicht, war oben auch schon falsch geschrieben, habe ich aber übersehen. Wenn du
[mm] \bigcap_{i=1}^{n} ]-\bruch{1}{i},1+\bruch{1}{i}[ [/mm]
meinst, dann ist das [mm] ]-\bruch{1}{n},1+\bruch{1}{n}[ [/mm]
und das ist eine offene Menge.
[mm] \bigcap_{i=1}^{\infty} ]-\bruch{1}{i},1+\bruch{1}{i}[ [/mm]
ist = [0, 1], und das ist ein abgeschlossenes Intervall.

Über unendliche Durchschnitte von offenen Mengen kann man i. a. keine Aussagen machen, das kann so oder anders sein. Unten hast du noch ein Beispiel dafür, daß der Durchschnitt dann abgeschlossen sein kann.

> Und meine zweite Frage ist:
>  
> ii) Durchschnitt unendlich vieler offener Mengen ist nicht
> wieder offen. Beispiel:
>  
> Sei [mm]U_n=]-\bruch{1}{n},\bruch{1}{n}[.[/mm] Dann ist
> [mm]\bigcap_{i=1}^{\infty} ]-\bruch{1}{n},\bruch{1}{n}[[/mm] = {0}
> nicht offen, aber abgeschlossen, oder? Stimmt dieses
> Beispiel wenigstens?  

Ja.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de