www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Offene Überdeckung
Offene Überdeckung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offene Überdeckung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:25 Mi 30.03.2011
Autor: Nadia..

Aufgabe
Aufgabe
Entscheiden Sie (mit Begründung), ob die folgenden o offenen Überdeckungen jeweils eine endliche Teilüberdeckung
enthalten.

1.)  $ ]0,1[^2 [mm] \subset \bigcup \{U_1(a+n)| n \in Z^2 \} [/mm] $, wobei  $ a = [mm] (0,\frac{1}{2}) [/mm] $

2.)$ ]0,1[^2 [mm] \subset \bigcup \{U_\frac{1}{2}((t,a))| t \in R \} [/mm] $, wobei  $ a = [mm] \frac{1}{2} [/mm] $


3. $ ]0,1[^2 [mm] \subset \bigcup \{U_r(q)|r\in Q^+, q \in Q^2 \cap ]0,1[^2\, \} [/mm] $



4. $ [mm] [0,1]^2 \subset \bigcup \{U_r(q)|r\in Q^+, q \in Q^2 \cap ]0,1[^2\, \} [/mm] $

Zu 1.
ja sie enthält eine endliche Teilüberdeckung,denn

$ ]0,1[^2 [mm] \subset U_1(0,-\frac{1}{2}) \cup U_1(0,\frac{1}{2}) U_1(1,-\frac{1}{2}) \cup U_1(-1,-\frac{1}{2}) [/mm] $

Zu 2.
nein sie enthält keine endliche Teilüberdeckung,denn

$ ]0,1[^2 [mm] \nsubseteq \bigcup_{t\in I \subset R,\,a=\frac{1}{2}} \frac{1}{2}(t,a)\cap [/mm] ]0,1[^2 $

        
Bezug
Offene Überdeckung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Mi 30.03.2011
Autor: rainerS

Hallo!

> Aufgabe
>  Entscheiden Sie (mit Begründung), ob die folgenden
> o offenen Überdeckungen jeweils eine endliche
> Teilüberdeckung
>  enthalten.
>  1.)  [mm]]0,1[^2 \subset \bigcup \{U_1(a+n)| n \in Z^2 \} [/mm],
> wobei  [mm]a = (0,\frac{1}{2})[/mm]
>  
> 2.)[mm] ]0,1[^2 \subset \bigcup \{U_\frac{1}{2}((t,a))| t \in R \} [/mm],
> wobei  [mm]a = \frac{1}{2}[/mm]
>  
>
> 3. [mm]]0,1[^2 \subset \bigcup \{U_r(q)|r\in Q^+, q \in Q^2 \cap ]0,1[^2\, \}[/mm]
>  
>
>
> 4. [mm][0,1]^2 \subset \bigcup \{U_r(q)|r\in Q^+, q \in Q^2 \cap ]0,1[^2\, \}[/mm]
>  
> Zu 1.
>  ja sie enthält eine endliche Teilüberdeckung,denn
>  
> [mm]]0,1[^2 \subset U_1(0,-\frac{1}{2}) \cup U_1(0,\frac{1}{2}) U_1(1,-\frac{1}{2}) \cup U_1(-1,-\frac{1}{2})[/mm]

[ok]

>  
> Zu 2.
>  nein sie enthält keine endliche Teilüberdeckung,

[ok]

> denn
>  
> [mm]]0,1[^2 \nsubseteq \bigcup_{t\in I \subset R,\,a=\frac{1}{2}} \frac{1}{2}(t,a)\cap ]0,1[^2[/mm]

Das verstehe ich nicht.  Rechts steht wieder eine unendliche Überdeckung.

Überlege dir folgendes: die einzelnen [mm] $\{U_\frac{1}{2}((t,\bruch{1}{2}))\mid t \in R \} [/mm] $ sind offene Kreisflächen vom Radius $1/2$, deren Mittelpunkt den Abstand $1/2$ von der x-Achse hat.

Wenn du endlich viele dieser Kreisflächen nimmst, warum gibt es dann immer noch Punkte aus $]0,1[^2$, die in keiner dieser offenen Kreisflächen liegen?

Viele Grüße
   Rainer


Bezug
                
Bezug
Offene Überdeckung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Mi 30.03.2011
Autor: Nadia..

Danke für die Antwort

Also rechts steht eine endliche Teilüberdeckung, da $t [mm] \in [/mm] I [mm] \subset [/mm] R$
Ich geh davon aus, wenn [mm] $I\subset [/mm] R$ dann ist I endlich,oder nicht?


Lg

Bezug
                        
Bezug
Offene Überdeckung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Do 31.03.2011
Autor: rainerS

Hallo!

> Danke für die Antwort
>  
> Also rechts steht eine endliche Teilüberdeckung, da [mm]t \in I \subset R[/mm]
>  
> Ich geh davon aus, wenn [mm]I\subset R[/mm] dann ist I endlich,oder
> nicht?

Meinst du mit [mm] $\subset [/mm] R$ ein Intervall der reellen Zahlen als Indexmenge?  Eine Intervall hat unendlich viele Punkte, daher besteht deine Überdeckung aus unendlich vielen Teilmengen.

Endlich heißt, dass du eine endliche Indexmenge I= [mm] $\{t_1,\dots,t_m\}$ [/mm] (also mit m Elementen) angeben kannst, sodass deine Überdeckung die Form

[mm] \bigcup_{i=1}^m U_{\bruch{1}{2}} (t_i,\bruch{1}{2}) [/mm]

hat.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de