www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Offenheit bzgl. Spurmetrik
Offenheit bzgl. Spurmetrik < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offenheit bzgl. Spurmetrik: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:57 So 08.12.2013
Autor: DeepSound

Aufgabe
Sei (X,d) metrischer Raum, [mm] A\subseteq X [/mm] und [mm] d_{A} [/mm] die durch d induzierte Spurmetrik [mm] (d_{a}=d|_{A\times A}). [/mm] Dann gilt:

[mm] B\subseteq A [/mm] offen in [mm] (A,d_{A}) \gdw [/mm] es gibt [mm] U\subseteq X [/mm] offen in (X,d) mit [mm] B=A\cap U [/mm]

Hallo,

bei dieser Aufgabenstellung fehlt mir eine Idee, um die Rückrichtung zu zeigen. Die Hinrichtung hab ich gezeigt, indem ich einfach alle Epsilon-Umgebungen um die Elemente in B zusammengefasst habe und dies als U definiert hab und dann gezeigt habe, dass die Mengen B und [mm] A\cap [/mm] U gleich sind. Aber bei der Rückrichtung krieg ich das nicht hin, aber ich hab auch keine andere Idee, wie man das zeigen könnte. Wäre hilfreich, wenn mich einer auf die richtige Fährte locken könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Offenheit bzgl. Spurmetrik: Antwort
Status: (Antwort) fertig Status 
Datum: 07:01 Mo 09.12.2013
Autor: fred97


> Sei (X,d) metrischer Raum, [mm]A\subseteq X[/mm] und [mm]d_{A}[/mm] die durch
> d induzierte Spurmetrik [mm](d_{a}=d|_{A\times A}).[/mm] Dann gilt:
>  
> [mm]B\subseteq A[/mm] offen in [mm](A,d_{A}) \gdw[/mm] es gibt [mm]U\subseteq X[/mm]
> offen in (X,d) mit [mm]B=A\cap U[/mm]
>  Hallo,
>  
> bei dieser Aufgabenstellung fehlt mir eine Idee, um die
> Rückrichtung zu zeigen. Die Hinrichtung hab ich gezeigt,
> indem ich einfach alle Epsilon-Umgebungen um die Elemente
> in B zusammengefasst habe und dies als U definiert hab und
> dann gezeigt habe, dass die Mengen B und [mm]A\cap[/mm] U gleich
> sind. Aber bei der Rückrichtung krieg ich das nicht hin,
> aber ich hab auch keine andere Idee, wie man das zeigen
> könnte. Wäre hilfreich, wenn mich einer auf die richtige
> Fährte locken könnte.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Es sei also [mm]B=A\cap U[/mm] mit U offen in X.


Sei [mm] x_0 \in [/mm] B. Dann ist [mm] x_0 \in [/mm] U.  Es gibt also ein r>0 mit:


    [mm] \{x \in X: d(x,x_0)
Damit ist

     [mm] \{x \in A: d_A(x,x_0)
FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de