www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Op. mit endlichem Bild
Op. mit endlichem Bild < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Op. mit endlichem Bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Sa 25.10.2014
Autor: Samyy

Aufgabe
Seien $X,Y$ zwei Banachräume und sei [mm] $T:X\rightarrow [/mm] Y$ ein linearer Operator mit endlichem Bild. Zeigen Sie, dass es [mm] $N\in\mathbb{N}, x_n'\in [/mm] X', [mm] y_n\in [/mm] Y$ gibt mit n=1,...,N gibt, s.d.:

[mm] $T(x)=\sum\limits_{n=1}^N x_n'(x) y_n$, [/mm] für alle [mm] $x\in [/mm] X$.


Hallo,

sei eine Basis für das Bild von T gegeben durch die Vektoren [mm] $\lbrace y_1,...,y_N \rbrace$. [/mm] Dann gibt es sicherlich [mm] $e_1,...,e_N$ [/mm] mit [mm] $T(e_n)=y_n$ [/mm] für alle $n=1,...,N$ und diese [mm] $e_i$ [/mm] sind notwendigerweise auch linear unabhängig.

Nun sind die [mm] $y_n$, [/mm] welche eine Basis des Bildes sein soll, bestimmt die in der Aufgabenstellung geforderten [mm] $y_n$. [/mm] Nur wie muss ich denn die stetigen linearen Abbildungen [mm] $x_n [/mm] '$ wählen? Muss man die linear unabhängigen Vektoren [mm] $e_n$ [/mm] zu einer Hamelbasis von $X$ fortsetzen und dann [mm] $x_n'$ [/mm] als die Projektion auf die jeweiligen Koordinaten zu [mm] $e_n$ [/mm] wählen? Wäre das eine mögliche Lösung? Gibt es eine elegantere Möglichkeit?

Grüße

        
Bezug
Op. mit endlichem Bild: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Sa 25.10.2014
Autor: fred97


> Seien [mm]X,Y[/mm] zwei Banachräume und sei [mm]T:X\rightarrow Y[/mm] ein
> linearer Operator mit endlichem Bild.


Du meinst sicher : mit endlichdimensionalem Bild


> Zeigen Sie, dass es
> [mm]N\in\mathbb{N}, x_n'\in X', y_n\in Y[/mm] gibt mit n=1,...,N
> gibt, s.d.:
>  
> [mm]T(x)=\sum\limits_{n=1}^N x_n'(x) y_n[/mm], für alle [mm]x\in X[/mm].

Wenn mit X' der topologische Dual von X gemeint ist, so sind die [mm] x_j' [/mm] stetig.

Dann ist die Aussage nur dann richtig, wenn T auch noch als stetig vorausgesetzt wird.


>  
> Hallo,
>  
> sei eine Basis für das Bild von T gegeben durch die
> Vektoren [mm]\lbrace y_1,...,y_N \rbrace[/mm]. Dann gibt es
> sicherlich [mm]e_1,...,e_N[/mm] mit [mm]T(e_n)=y_n[/mm] für alle [mm]n=1,...,N[/mm]
> und diese [mm]e_i[/mm] sind notwendigerweise auch linear
> unabhängig.
>  
> Nun sind die [mm]y_n[/mm], welche eine Basis des Bildes sein soll,
> bestimmt die in der Aufgabenstellung geforderten [mm]y_n[/mm]. Nur
> wie muss ich denn die stetigen linearen Abbildungen [mm]x_n '[/mm]
> wählen? Muss man die linear unabhängigen Vektoren [mm]e_n[/mm] zu
> einer Hamelbasis von [mm]X[/mm] fortsetzen und dann [mm]x_n'[/mm] als die
> Projektion auf die jeweiligen Koordinaten zu [mm]e_n[/mm] wählen?
> Wäre das eine mögliche Lösung? Gibt es eine elegantere
> Möglichkeit?

Tipp: Hahn-Banach

FRED

>  


> Grüße


Bezug
                
Bezug
Op. mit endlichem Bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:39 Mo 27.10.2014
Autor: Samyy

Hallo,

vielen Dank! Ja du hast recht mit deinen Korrekturen. Entschuldige die Missverstaendnisse. Ein Problem habe ich da aber noch. Ich habe nun folgenden Ansatz:

Sei [mm] $Tx=\sum_{i=1}^N \lambda_n(x) y_i$, [/mm] wobei [mm] $y_1,...,y_N$ [/mm] eine Basis von Im(T) ist und [mm] $\lambda_n:X\rightarrow \mathbb{R}$ [/mm] funktionen.
Nun habe ich definiert [mm] $x_n'(x):=\lambda_n(x)$. [/mm]

Diese Funktionen sind sicher linear, das folgt aus der Linearitaet von T. Aber warum sind die Funktionen auch stetig?

Angenommen es gibt ein n, s.d. die Menge [mm] $\lbrace \vert \lambda_n(x)\vert [/mm] : [mm] \Vert [/mm] x [mm] \Vert=1 \rbrace$ [/mm] unbeschraenkt ist. Wie kann ich daraus folgern, dass auch T unbeschraenkt sein muss?

Bezug
                        
Bezug
Op. mit endlichem Bild: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Mo 27.10.2014
Autor: fred97


> Hallo,
>  
> vielen Dank! Ja du hast recht mit deinen Korrekturen.
> Entschuldige die Missverstaendnisse. Ein Problem habe ich
> da aber noch. Ich habe nun folgenden Ansatz:
>  
> Sei [mm]Tx=\sum_{i=1}^N \lambda_n(x) y_i[/mm], wobei [mm]y_1,...,y_N[/mm]
> eine Basis von Im(T) ist und [mm]\lambda_n:X\rightarrow \mathbb{R}[/mm]
> funktionen.


Hä ? Irgendwelche Funktionen ???? Di sollst doch zeigen, dass es soche Funktionen gibt, und zwar stetig und linear !


>  Nun habe ich definiert [mm]x_n'(x):=\lambda_n(x)[/mm].
>  
> Diese Funktionen sind sicher linear, das folgt aus der
> Linearitaet von T. Aber warum sind die Funktionen auch
> stetig?
>  
> Angenommen es gibt ein n, s.d. die Menge [mm]\lbrace \vert \lambda_n(x)\vert : \Vert x \Vert=1 \rbrace[/mm]
> unbeschraenkt ist. Wie kann ich daraus folgern, dass auch T
> unbeschraenkt sein muss?  


Ich hab Dir doch einen Tipp gegeben: Hahn-Banach !

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de