www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Operatornorm Matrizen konverge
Operatornorm Matrizen konverge < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Operatornorm Matrizen konverge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Fr 02.04.2010
Autor: kiwibox

Hallo,
ich habe schon wieder Probleme mit einer Aufabe:

Zeigen Sie, dass die Konvergenz von Matrizen in der Operatornorm äquivalent ist zur Konvergenz aller entsprechenden Matrixelemente in K.

Kann mir einer erklären, was damit gemeint ist? Ich verstehe die ganze Aufgabe nicht, und weiß auch gar nicht was ich da machen soll...
Operatornorm wurde bei uns so definiert:
||A||: = [mm] sup_{||x||\le 1} ||Ax||=sup_{||x||=1} [/mm] ||Ax||= sup [mm] \bruch{||Ax||}{||x||} [/mm] heißt Operatornorm von A.
Aber wie soll ich das damit einbringen? Ich bin total ratlos....

Für Tipps, Ideen, irgendwelche nützlichen Buchvorschläge wäre ich euch echt dankbar.

MFG
Andrea

        
Bezug
Operatornorm Matrizen konverge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Fr 02.04.2010
Autor: Merle23

Weisst du wie in einem normierten Raum [mm](V, \| \cdot \|)[/mm] Konvergenz definiert ist?

Hier in dieser Aufgabe hast du den Vektorraum aller Matrizen zusammen mit der Operatornorm. Somit hast du einen Konvergenzbegriff für Matrizen mit Hilfe dieser Norm.

Es gibt aber auch noch einen anderen Konvergenzbegriff, nämlich die Konvergenz jedes einzelnen Matrizeintrags (einfach Konvergenz von Folgen).

Nun sollst du zeigen, das diese beiden Begriffe äquivalent sind.

LG, Alex

Bezug
                
Bezug
Operatornorm Matrizen konverge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:59 Sa 03.04.2010
Autor: kiwibox


> Weisst du wie in einem normierten Raum [mm](V, \| \cdot \|)[/mm]
> Konvergenz definiert ist?

Also in der Vorlesung haben wir das nicht direkt definiert. Wir haben gesagt, dass jeder normierte Raum bzgl. d(x,y):=||x-y|| ein metrischer Raum ist, und somit dafür alle Resultate von metrischen Räumen darauf anwenden können...
D.h. ich nehme die Definition vom metrischen Raum und ändere sie ab...Eine Folge [mm] (x_{n}) [/mm] konvergiert genau dann gegen x [mm] \in [/mm] X, wenn zu jedem [mm] \varepsilon [/mm] > 0 ein [mm] n_{0}(\varepsilon) \in \IN [/mm] existiert, so dass [mm] ||x_{n}-x||<\varepsilon, \forall [/mm] n [mm] \ge n_{0}(\varepsilon) [/mm]

> Hier in dieser Aufgabe hast du den Vektorraum aller
> Matrizen zusammen mit der Operatornorm. Somit hast du einen
> Konvergenzbegriff für Matrizen mit Hilfe dieser Norm.

Und wie sieht der aus?

> Es gibt aber auch noch einen anderen Konvergenzbegriff,
> nämlich die Konvergenz jedes einzelnen Matrizeintrags
> (einfach Konvergenz von Folgen).

[mm] (a_{n}) [/mm] nach oben beschränkt + monton wachsend bzw. nach unten beschränkt + monoton fallend [mm] \Rightarrow [/mm] konvergent
aber ich glaube du meinst, eher diese Definition:
eine Zahlenfolge [mm] (a_{n}) [/mm] konvergiert genau dann gegen a [mm] \in \IC, [/mm] wenn es zu jedem [mm] \varepsilon [/mm] > 0 ein [mm] n_{0}(\varepsilon) \in \IN [/mm] existiert, so dass [mm] |a_{n}-a|<\varepsilon, \forall [/mm] n [mm] >n_{0}(\varepsilon) [/mm] gilt.

> Nun sollst du zeigen, das diese beiden Begriffe äquivalent
> sind.

aber irgendwie bin ich mir da noch immer nicht schlüssig.

>  
> LG, Alex


Bezug
                        
Bezug
Operatornorm Matrizen konverge: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Sa 03.04.2010
Autor: Merle23

Du hast eine Folge von Matrizen [mm]A_n := (a_{ij}^n)_{ij}[/mm].

Konvergenz Nr. 1: [mm] A_n [/mm] konvergiert bzgl. der Operatornorm [mm] \|\cdot\|, [/mm] d.h. [mm]\forall \epsilon > 0 \exists N_0\in \IN[/mm], so dass [mm]\|A_n - A\| < \epsilon[/mm], für alle [mm]n > N_0[/mm].

Konvergenz Nr. 2: Für fixe i und j bilden die [mm] (a_{ij}^n) [/mm] eine Zahlenfolge. Wir sagen jetzt einfach das [mm] A_n [/mm] gegen A konvergiert, wenn für alle i,j diese Folgen konvergieren. Anschaulich heisst das einfach, das jeder einzelne Matrixeintrag in der Folge [mm] (A_n) [/mm] einzeln konvergiert.

Deine Aufgabe ist es nun zu zeigen, das diese beiden Konvergenzbegriffe zusammenfallen, d.h. konvergiert eine Folge von Matrizen [mm] (A_n) [/mm] bzgl. dem einen Begriff, so auch bzgl. dem anderen.

LG, Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de