Optimale Funktion? < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 11:19 Do 25.11.2021 | Autor: | Gooly |
Ich habe einen Haufen (5000) ganzzahlige Werte (1 .. ~40.000), die ich in 9 Kategorien verteilen soll, die sich um den Mittelwert bilden sollen. Sind diese Kategorien zu nahe beim Mittelwert und zu eng, habe ich in der kleinsten und der größten Kategorie ~93% der Werte, und in den verbleibenden 7 jeweils 1% - die Verteilung schaut wie ein bereite U aus und ist offen nach oben. Sind die Kategorien zu breit, ist fast alles in der Mitte und an den Ränder nichts - diese Verteilung schaut wie ein spitzer Berg aus bzw. offen nach unten.
Ich suche jetzt eine einfache Funktion, die mir aus den 9 Werten in den Kategorien 1 - 9 sagt, ob die Kategorien zu eng und zu nahe am Mittelwert sind oder zu breit.
Die 'normale' Statistik (Mittelwert, Median, Varianz,Wölbung,..) funktioniert meinem Vorurteil nach doch nur(?) bei spitzkegeligen Verteilungen - was aber bei 'tieftaliegen' Verteilungen?
Intuitiv wäre das Ideal, wenn die Verteilungskurve sich einer Geraden mit der Steigung 0 nähert. Das wäre dann ein Kriterium für eine Optimierung.
Gibt es für so einen Ansatz eine einfache Lösung?
Danke schon mal!
Gooly
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:10 Do 25.11.2021 | Autor: | statler |
Hi!
> Ich habe einen Haufen (5000) ganzzahlige Werte (1 ..
> ~40.000), die ich in 9 Kategorien verteilen soll, die sich
> um den Mittelwert bilden sollen. Sind diese Kategorien zu
> nahe beim Mittelwert und zu eng, habe ich in der kleinsten
> und der größten Kategorie ~93% der Werte, und in den
> verbleibenden 7 jeweils 1% - die Verteilung schaut wie ein
> bereite U aus und ist offen nach oben. Sind die Kategorien
> zu breit, ist fast alles in der Mitte und an den Ränder
> nichts - diese Verteilung schaut wie ein spitzer Berg aus
> bzw. offen nach unten.
>
> Ich suche jetzt eine einfache Funktion, die mir aus den 9
> Werten in den Kategorien 1 - 9 sagt, ob die Kategorien zu
> eng und zu nahe am Mittelwert sind oder zu breit.
>
> Die 'normale' Statistik (Mittelwert, Median,
> Varianz,Wölbung,..) funktioniert meinem Vorurteil nach
> doch nur(?) bei spitzkegeligen Verteilungen - was aber bei
> 'tieftaliegen' Verteilungen?
So ganz verstehe ich dein Problem noch nicht. Die (empirische) Verteilung deiner Daten steht doch fest, da ist nach der Erfassung nichts mehr zu machen. Und auf diese Daten kannst du den ganzen Apparat der Deskriptiven Statistik loslassen: Mittelwert, Quantile, Varianz usw.
Weiterhin gibt es diverse Tests, um zu prüfen, ob deine Verteilung vielleicht mit einer der bekannten Verteilungen verträglich ist.
Du willst jetzt anscheinend deine Daten in Klassen einteilen, dabei wirft man Informationen weg! Die Sache wird übersichtlicher, verliert aber an Aussagekraft. Wenn die Klassen gleich groß sein sollen, bräuchtest du die zu den Vielfachen von 11 % gehörenden Quantile als Klassengrenzen.
>
> Intuitiv wäre das Ideal, wenn die Verteilungskurve sich
> einer Geraden mit der Steigung 0 nähert. Das wäre dann
> ein Kriterium für eine Optimierung.
> Gibt es für so einen Ansatz eine einfache Lösung?
Das weiß ich nicht, dazu müßte ich das Problem verstehen.
Gruß
Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:58 Do 25.11.2021 | Autor: | Gooly |
Ok, das (wichtige) Detail habe ich nicht erwähnt - sorry.
Nach jeweils 10% aller Daten soll eine Evaluierung stattfinden, aufgrund der die Kategorien angepasst werden.
Ist die Verteilung ein breites U, sollen die Kategorien verbreitet werden, und bei einem spitzen Lambda sollen sie sich verengen.
Dadurch ergeben sich bei diesem Setup 10 Anpassungen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Do 02.12.2021 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|