www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Optimierung von 2 konvexen Fkt
Optimierung von 2 konvexen Fkt < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierung von 2 konvexen Fkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:44 Mo 14.12.2009
Autor: Econis

Hallo allerseits,

Ich bin gerade dabei ein kleines Modell zu basteln und bin sehr unsicher ob dass was ich mir denke stimmt. Falls jemand mir dass bestätigen könnte (oder mich darauf hinweisen was ich falsch mache) währe ich sehr dankbar dafür. Das Model ist folgendes:

Es gibt eine konvexe Produktionsfunktion mit Nullstellen an beiden Axen:

(1) f (x,y) =  x + y + [mm] x^a*x^b [/mm] |a,b € [0,1]

und eine Kostenfunktion mit steigenden Kosten bei erhöhter Mischung der Inputs, ausserdem eine Variable c um diese "Mischkosten" später anzupassen und den Effekt zu sehen:

(2) g(x,y) = x + y + (x*y)*(1+c)

Ich würde jetzt gerne zeigen dass es ein inneres Optimum gibt wenn c relativ niedrig ist. Dass sich also beide Funktion im R+ Bereich schneiden (aber nicht auf der Axe)

Die erste Hauptdiagonale meiner Hesse Matrix ist:

(3)  [mm] -a²*x^{a-2}*y^b [/mm] und somit negativ wenn a € [0,1]

Die zweite Hauptidagonale ist:

(4) [mm] (-a²*x^{a-2}*y^b)*(-b²*x^a*x^{b-2}) [/mm] - (a*b*x^(a-1)*y^(b-1)-c)²

und somit tendenziell positiv (in Abhängikeit der Funktion) für kleine c ! (?)

Also gibt es ein Maximum der Funktion, sprich die beiden Funktionen schneiden sich innerhalb von R+ ohne die Axen zu berühren (in diesem Punkt) für kleine c.

Meine Annahme bei der ich mir ziemlich unsicher ist nun die folgende:
Für große c wird (4) negativ (soweit so gut), damit währe die Hesse Matrix positiv semi definit und damit gäbe es ein Minimum. Da beide Funktionen die Axen berühren währe dieser Minimalpunkt auf einer der beiden Achsen. Es würde sich also eine Randlösung ergeben. Spricht da mein Wunschdenken oder ist das tatsächlich so?

Vielen Dank für eure Hilfe!!!

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Optimierung von 2 konvexen Fkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 16.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de