www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Optimierungsaufgabe
Optimierungsaufgabe < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierungsaufgabe: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 12:43 Mi 14.05.2008
Autor: n1ce

Aufgabe
Hallo,

ich habe folgendes Problem bei dieser Aufgabe.

In eine Dachschräge soll an die Querwand ein Schrank mit einer Tiefe von 0,7m eingebaut werden. Welche Höhe und welche Breite sollte der Schrank haben, damit der Rauminhalt möglichst groß ist ?

Hier ist die Grafik dazu:
[Dateianhang nicht öffentlich]

Ich habe schon etliche dieser Aufgaben gerechnet, allerdings komme ich hier einfach nicht weiter..

Hier ist mein Ansatz:

b = 2,5 - x
a = 5 - z

Allerdings darf ich ja nur eine Variable haben, um die quadratische Gleichung zu lösen, die dabei entstehen soll.

Kann mir da jemand weiterhelfen ? Danke im Vorraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Optimierungsaufgabe: Strahlensatz
Status: (Antwort) fertig Status 
Datum: 12:47 Mi 14.05.2008
Autor: Loddar

Hallo n1ce,

[willkommenmr] !!


Du kannst hier einen der Strahlensätze anwenden mit:
[mm] $$\bruch{b}{z} [/mm] \ = \ [mm] \bruch{2.5}{5.0}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Optimierungsaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Mi 14.05.2008
Autor: n1ce

Das habe ich mir auch schon überlegt, allerdings komme ich dann zu folgendem:

[mm] \bruch{b}{z} [/mm] = [mm] \bruch{2,5}{5} [/mm]

dann ist

z = 2b

a= 5 - 2b

b = 2,5 - x

bringt mir also auch nichts, denn dann habe ich wieder eine gleichung mit 2 unbekannten ...sonst noch ideen ?

Bezug
                        
Bezug
Optimierungsaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Mi 14.05.2008
Autor: M.Rex

Hallo

Du hast das Rechteck, dessen Flächeninhalt A=a*b möglichst gross werden soll.

a=5-z, das ist soweit klar
also:

A=a*b=(5-z)*b

Und jetzt der besagte Strahlensatz.

[mm] \bruch{b}{z}=\bruch{2,5}{5} [/mm]
[mm] \gdw b=\bruch{z}{2} [/mm]

Das kann ich jetzt in A=a*b=(5-z)*b einsetzen, und bekomme:

[mm] A=(5-z)*\bruch{z}{2}=\bruch{5}{2}z-\bruch{1}{2}z^{2} [/mm]

Und von dieser (nach unten offenen) Parabel kannst du den Scheitelpunkt bestimmen, und daraus dann a und b

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de