www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Optionszeit
Optionszeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optionszeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Do 17.06.2010
Autor: Irmchen

Hallo alle zusammen!

Ich habe hier ein Lemma, dessen Aussage ich verstehe ( denke ich zumindest) , aber bei dem kurzen  Beweis habe ich leider viele Schwierigkeiten :-(.

Lemma :

Sind S, T Optionszeiten bzgl. desselben Filtration [mm] ( \mathcal F_n)_{n \in \mathbb N } [/mm] in [mm] \Omega [/mm], so gilt:

Aus [mm] S \le T \Rightarrow \mathcal F_s \subset \mathcal F_t \subset \mathcal F_{ \infty } [/mm]

Also, wenn ich das richtig verstanden habe, sagt der Satz aus, dass die verfügbare Information zum Zeitverlauf steigt, richtig???

Beweis

Wegen [mm] S \le T [/mm] gilt [mm] \{ T \le n \} \subset \{ S \le n \}. [/mm]
Muss da nicht [mm] \supset [/mm] stehen???

Und damit folgt,

[mm] A \cap \{ T \le n \} = A \cap \{ S \le n \} \cap \{ T \le n \} [/mm]
für [mm] n ßin \mathbb N, \ A \subset \Omega [/mm].

Warum macht man diesen Ansatz ?

Diese folgenden Zeilen versteh ich gar nicht :-( .
Aus [mm] A \in \mathcal F_S [/mm] folgt dann auch [mm] A \in \mathcal F_T [/mm], da [mm] A \in \mathcal F_{\infty}, \ A \cap \{ S \le n \} \in \mathcal F_n, [/mm] und  [mm] \{ T \le n \} \in \mathcal F_n [/mm] gilt.

Warum ist    [mm] A \in \mathcal F_{\infty} [/mm]  ?

Vielen Dank!

Viele Grüße
Irmchen


        
Bezug
Optionszeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Do 17.06.2010
Autor: gfm


> Sind S, T Optionszeiten bzgl. desselben Filtration [mm]( \mathcal F_n)_{n \in \mathbb N }[/mm]
> in [mm]\Omega [/mm], so gilt:
>
> Aus [mm]S \le T \Rightarrow \mathcal F_s \subset \mathcal F_t \subset \mathcal F_{ \infty }[/mm]

Wenn [mm] \mathcal{F}_t [/mm] eine Filtration ist, gilt doch immer [mm]\mathcal F_s \subset \mathcal F_t[/mm] für s<t per Definition, oder? Muss da nicht [mm] \mathcal F_T [/mm] und [mm] \mathcal F_S [/mm] stehen?

> Also, wenn ich das richtig verstanden habe, sagt der Satz
> aus, dass die verfügbare Information zum Zeitverlauf
> steigt, richtig???

Die Information zur Stopzeit.

> Wegen [mm]S \le T[/mm] gilt [mm]\{ T \le n \} \subset \{ S \le n \}.[/mm]
>  
> Muss da nicht [mm]\supset[/mm] stehen???

Wenn [mm] \omega\in\{ T \le n \}, [/mm] gilt [mm] S(\omega)\le T(\omega)\le [/mm] n

>  
> Und damit folgt,
>  
> [mm]A \cap \{ T \le n \} = A \cap \{ S \le n \} \cap \{ T \le n \}[/mm]
>  
> für [mm]n ßin \mathbb N, \ A \subset \Omega [/mm].
>  
> Warum macht man diesen Ansatz ?

Wie ist [mm] \mathcal{F}_T [/mm] definiert?

>
> Diese folgenden Zeilen versteh ich gar nicht :-( .
>  Aus [mm]A \in \mathcal F_S[/mm] folgt dann auch [mm]A \in \mathcal F_T [/mm],
> da [mm]A \in \mathcal F_{\infty}, \ A \cap \{ S \le n \} \in \mathcal F_n,[/mm]
> und  [mm]\{ T \le n \} \in \mathcal F_n[/mm] gilt.

Im wesentlichen läuft es auf [mm] A\cap\{S\le n\}\cap\{T\le n\}=A\cap\{T\le n\} [/mm]
hinaus, da [mm] \{T\le n\}\subset \{S\le n\}. [/mm] Es ist [mm] A\cap\{S\le n\}\in \mathcal{F}_n [/mm] und [mm] \{T\le n\}\in\mathcal{F}_n. [/mm]

>  
> Warum ist    [mm]A \in \mathcal F_{\infty}[/mm]  ?
>  

Wie ist [mm] \mathcal F_{\infty} [/mm] definiert?

LG

gfm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de