www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ordnung Gruppenelement
Ordnung Gruppenelement < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung Gruppenelement: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:17 Mi 27.02.2008
Autor: fkerber

Aufgabe
a) Welche Ordnung hat die Symmetriegruppe G des Oktaeders?
b) Welche Ordnungen treten für Elemente von G auf?

Hi!

Also die Ordnung von G ist 48 - das ist denke ich soweit kein Problem. Gemacht habe ich es folgendermaßen (Kurzfassung):
Ich nehme einen Punkt in der Mitte einer Seite, Bahn ist dann 8, Stabilisator ist isomorph D3 , dann hab ich 8*6 = 48.
Ok? (Geht doch immer so, mit Punkt in Seitenmitte und dann hab ich den Stab immer Isomorph zu irgendeinenm Dx, oder?)

So zu b)
Wenn ich bspw. S7 habe, dann hab ich ja Elemente der Ordnung 1,2,3,4,5,6,7,10,12
Theorie, also bis x (bei Sx) hab ich die Elemente dieser Ordnung immer drin (also 1-7 hier) und dann schau ich mal noch, was ich aus den Zahlen so basteln kann, also 2*5 (also ein Zweier-Zykel und ein 5er) etc.

Nur was mach ich beim Oktaeder? G ist ja nicht isomorph zu irgendeinem Sx, was tue ich da?

Danke.

Ciao, Frederic


        
Bezug
Ordnung Gruppenelement: 1 Anfang
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Mi 27.02.2008
Autor: statler

Hi!

Ich habe diesen Beitrag verschoben.

> a) Welche Ordnung hat die Symmetriegruppe G des Oktaeders?
>  b) Welche Ordnungen treten für Elemente von G auf?

> Also die Ordnung von G ist 48 - das ist denke ich soweit
> kein Problem. Gemacht habe ich es folgendermaßen
> (Kurzfassung):
>  Ich nehme einen Punkt in der Mitte einer Seite, Bahn ist
> dann 8, Stabilisator ist isomorph D3 , dann hab ich 8*6 =
> 48.

Ich bin mir im Moment nicht ganz sicher, ob das wirklich so ist. Es könnte nämlich sein, daß nur die Drehungen gemeint sind, davon gibt es 24; man kann sie relativ einfach aufzählen. (Und übrigens auch ihre Ordnungen.)

Mein Zweifel rührt daher, daß die sogenannte Ikosaedergruppe 60 Elemente hat, und das sind auch alles Drehungen.

Beim Oktaeder hast du für eine Ecke A zunächst 6 Möglichkeiten. Dann gibt es für eine mit A durch eine Kante verbundene Ecke noch 4 Möglichkeiten, und damit liegt die Abbildung fest, wenn ich das Oktaeder als 'starr' ansehe. Insgesamt also 24.

Ich muß noch mal nachdenken.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Ordnung Gruppenelement: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 Mi 27.02.2008
Autor: fkerber

Hi!

Danke fürs Verschieben - hab das Unterforum irgendwie übersehen.

Also das mit den 48 ist nach unserem Skript / Vorlesung OK - die Symmetriegruppe des Ikosaeders hat bei uns auch 120 Elemente - wir haben da also nicht nur die Drehungen drin.

Siehe dazu auch:
http://de.wikipedia.org/wiki/Ikosaeder
Dort wird im ersten Abschnitt auf diese Unterscheidung eingegangen.

Also die Zahl 48 ist an sich ok...


Ciao, Frederic

Bezug
        
Bezug
Ordnung Gruppenelement: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 05.03.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de