www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Ordnungs-,Körperaxiome
Ordnungs-,Körperaxiome < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnungs-,Körperaxiome: Verständnis
Status: (Frage) beantwortet Status 
Datum: 16:26 Fr 28.10.2005
Autor: Reaper

Hallo wir haben folgenden Ausdruck, der Körper- sowie Ordnungsaxiome verbindet (es gilt die lineare Ordnung) bewiesen:

Leider hab ich da ein paar Schwierigkeiten:
zu beweisen:
1.)
[mm] \forall [/mm] x  [mm] \in [/mm] K: (x>0  [mm] \Rightarrow [/mm] -x<0)

Jetzt haben wir das Ganze über einen Widerspruchsbeweis gelöst:
x !> 0  [mm] \Rightarrow [/mm] -x=0  [mm] \vee [/mm] -x > 0

Wir haben also 2 Fälle zu unterscheiden:
1.Fall -x=0  [mm] \Rightarrow [/mm] 0 = x + (-x) (Körperaxiom 5 inverses Element) > 0 + 0 = 0  

Und 0 > 0 ist Blödsinn

Was ich aber nicht verstehe ist warum ich x + (-x) > 0 + 0 sagen darf. Wegen OK1 also x < y -> x+z < y+z?
Wenn dem so ist dann stimmt das Ganze aber nicht mit dem 2.Fall zusammen wo im Skript einfach dasteht dass der Fall genauso geht wie der
erste also 0>0...Widerspruch
Für 2.Fall:

0 = x + (-x) > 0 +(-x)  -> 0>-x  was stimmt? (glaub eher nicht)...-x kann man jetzt nicht einfach als 0 ansetzen da es > 0 ist.


anderer Beweis:
2.)
zu beweisen:

[mm] \forall \not= [/mm] 0: x² = x*x > 0 insbesondere 1>0

x > 0 -> (OK2) x²>0  ....klar

x<0 -> nach obigen Beweis (1.)    ...  (-x)>0  

Nun folgt x*x = (Haben wir schon bewiesen) (-x)*(-x) > 0

Hier kapier ich bei x<0 gar nichts. Wozu brauch ich die Aussage -x>0 und warum darf ich einfach die Vorzeichen vertauschen?
Und -x ist ja nicht >0. Wie komme ich dann auf
x*x = (-x)*(-x) > 0...die Zeile ist mir zwar klar aber wie komme ich da drauf?

mfg,
Hannes


        
Bezug
Ordnungs-,Körperaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Fr 28.10.2005
Autor: Stefan

Hallo Hannes!

> Hallo wir haben folgenden Ausdruck, der Körper- sowie
> Ordnungsaxiome verbindet (es gilt die lineare Ordnung)
> bewiesen:
>  
> Leider hab ich da ein paar Schwierigkeiten:
>  zu beweisen:
>  1.)
>   [mm]\forall[/mm] x  [mm]\in[/mm] K: (x>0  [mm]\Rightarrow[/mm] -x<0)
>  
> Jetzt haben wir das Ganze über einen Widerspruchsbeweis
> gelöst:
>  x !> 0  [mm]\Rightarrow[/mm] -x=0  [mm]\vee[/mm] -x > 0

>  
> Wir haben also 2 Fälle zu unterscheiden:
>  1.Fall -x=0  [mm]\Rightarrow[/mm] 0 = x + (-x) (Körperaxiom 5
> inverses Element) > 0 + 0 = 0  
>
> Und 0 > 0 ist Blödsinn
>  
> Was ich aber nicht verstehe ist warum ich x + (-x) > 0 + 0
> sagen darf. Wegen OK1 also x < y -> x+z < y+z?

[ok]

>  Wenn dem so ist dann stimmt das Ganze aber nicht mit dem
> 2.Fall zusammen wo im Skript einfach dasteht dass der Fall
> genauso geht wie der
> erste also 0>0...Widerspruch
>  Für 2.Fall:
>  
> 0 = x + (-x) > 0 +(-x)  -> 0>-x  was stimmt? (glaub eher
> nicht)...-x kann man jetzt nicht einfach als 0 ansetzen da
> es > 0 ist.

Hier nutzt du die Regel [mm] $x_1>y_1, x_2 >y_2 \quad \Rightarrow \quad x_1 [/mm] + [mm] x_2 [/mm] > [mm] y_1 [/mm] + [mm] y_2$ [/mm] aus. Beachte, dass nach Voraussetzung $x>0$ gilt, und dass du in Fall 2 ja zudem $-x>0$ annimmst. Dies führt dann nach obiger Regel zu $x + (-x) > 0+0$, also zu $0>0$, Widerspruch.

Aber viel besser finde ich den Beweis, den du selber gegeben hast:

Aus $x>0$ folgt: $x+(-x) > 0 + (-x)$, also: $0>-x$.

Warum zeigt man es also nicht so direkt und stattdessen mit einem Widerspruchsbeweis? Das ist mir selber schleierhaft und erscheint mir in dem Skript umständlich zu sein...  

> anderer Beweis:
>  2.)
>  zu beweisen:
>
> [mm]\forall \not=[/mm] 0: x² = x*x > 0 insbesondere 1>0
>  
> x > 0 -> (OK2) x²>0  ....klar
>  
> x<0 -> nach obigen Beweis (1.)    ...  (-x)>0  
>
> Nun folgt x*x = (Haben wir schon bewiesen) (-x)*(-x) > 0
>  
> Hier kapier ich bei x<0 gar nichts. Wozu brauch ich die
> Aussage -x>0 und warum darf ich einfach die Vorzeichen
> vertauschen?

>  Und -x ist ja nicht >0.

Doch, im Falle $x<0$ (und um den ging es hier ja) schon...

> Wie komme ich dann auf
> x*x = (-x)*(-x) > 0...die Zeile ist mir zwar klar aber wie
> komme ich da drauf?

$x [mm] \cdot [/mm] x = (-x) [mm] \cdot [/mm] (-x)$ habt ihr ja bewiesen, wie du schreibst. Im Falle $x<0$ ist aber (siehe oben) $-x>0$, und daher auch: $(-x) [mm] \cdot [/mm] (-x)>0$.  

Liebe Grüße
Stefan


Bezug
                
Bezug
Ordnungs-,Körperaxiome: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 So 30.10.2005
Autor: Reaper

Danke für die super Erklärung.

mfg,
Hannes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de