www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ordnungsstruktur in Körpern
Ordnungsstruktur in Körpern < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnungsstruktur in Körpern: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:29 Sa 09.11.2013
Autor: Lernender

Aufgabe
Sei (K,+,*) ein angeordneter Körper. Zeigen Sie, dass für r,s [mm] \in [/mm] K mit 0 [mm] \le [/mm] r < s gilt:

[mm] \bruch{r}{1+r}<\bruch{s}{1+s} [/mm]

Ich bräuchte mal einen Ansatz für diese Aufgabe. Aus der Aufgabenstellung habe ich mir schon überlegt, dass auch folgende Ungleichungen gelten müssen (dazugehörige Rechenregeln haben wir in der Vorlesung bereits bewiesen):

1.) 0 < 1+r < 1+s

2.) 0 < [mm] \bruch{1}{1+s} [/mm] < [mm] \bruch{1}{1+r} [/mm]

3.) 0 < [mm] \bruch{1+r}{1+s} [/mm] < [mm] \bruch{1+s}{1+r} [/mm] (folgt aus 1. und 2.)

4.) 0 < [mm] \bruch{r}{1+s} [/mm] < [mm] \bruch{s}{1+r} [/mm] (folgt aus Aufgabenstellung und 2.)

4. sieht ja nun schon fast aus wie das Geforderte, aber eben nur fast. Ich komm einfach nicht darauf, wie ich Umstellen muss, damit ich auf ein Ergebnis komme. Man muss sicherlich beide Terme erweitern dann was umstellen und schließlich etwas ausklammern. Ich habe schon etliches ausporbiert, bin aber bisher nicht ans Ziel gekommen.
Kann mir bitte jemand einen Tipp für einen Ansatz geben. Dafür wäre ich sehr dankbar.

LG Lernender

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ordnungsstruktur in Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 So 10.11.2013
Autor: felixf

Moin!

> Sei (K,+,*) ein angeordneter Körper. Zeigen Sie, dass für
> r,s [mm]\in[/mm] K mit 0 [mm]\le[/mm] r < s gilt:
>  
> [mm]\bruch{r}{1+r}<\bruch{s}{1+s}[/mm]
>  Ich bräuchte mal einen Ansatz für diese Aufgabe. Aus der
> Aufgabenstellung habe ich mir schon überlegt, dass auch
> folgende Ungleichungen gelten müssen (dazugehörige
> Rechenregeln haben wir in der Vorlesung bereits bewiesen):
>  
> 1.) 0 < 1+r < 1+s
>  
> 2.) 0 < [mm]\bruch{1}{1+s}[/mm] < [mm]\bruch{1}{1+r}[/mm]
>  
> 3.) 0 < [mm]\bruch{1+r}{1+s}[/mm] < [mm]\bruch{1+s}{1+r}[/mm] (folgt aus 1.
> und 2.)
>  
> 4.) 0 < [mm]\bruch{r}{1+s}[/mm] < [mm]\bruch{s}{1+r}[/mm] (folgt aus
> Aufgabenstellung und 2.)
>  
> 4. sieht ja nun schon fast aus wie das Geforderte, aber
> eben nur fast. Ich komm einfach nicht darauf, wie ich
> Umstellen muss, damit ich auf ein Ergebnis komme. Man muss
> sicherlich beide Terme erweitern dann was umstellen und
> schließlich etwas ausklammern. Ich habe schon etliches
> ausporbiert, bin aber bisher nicht ans Ziel gekommen.
>  Kann mir bitte jemand einen Tipp für einen Ansatz geben.

Multiplizier doch mal die Gleichung, die du zeigen willst, mit dem Hauptnenner. (Dieser ist positiv - warum?) Was steht dann da?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de