www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "komplexe Zahlen" - Orientierung als 2-dim Mfkt
Orientierung als 2-dim Mfkt < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orientierung als 2-dim Mfkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Mi 15.02.2012
Autor: kily

Aufgabe
Sei (M,Σ) eine Riemannsche Fläche. Zeigen Sie, dass M, aufgefasst als 2-dimensionale, reelle. Mannigfaltigkeit, orientierbar ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die obige Aufgabenstellung habe ich im Internet gefunden, leider ohne Lösung. Ich denke die Antwort darauf würde auch mein Problem lösen. Ich muss zeigen, dass [mm] \overline{\IC} [/mm] (Riemannsche Fläche) als  [mm] \IR^2-Mannigfaltigkeit [/mm] orientierbar ist. Kann mir jemand helfen wie ich da vorgehen sollte. Vielen Dank im Voraus für Eure Hilfe.

        
Bezug
Orientierung als 2-dim Mfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Do 16.02.2012
Autor: rainerS

Hallo!

> Sei (M,Σ) eine Riemannsche Fläche. Zeigen Sie, dass M,
> aufgefasst als 2-dimensionale, reelle. Mannigfaltigkeit,
> orientierbar ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Die obige Aufgabenstellung habe ich im Internet gefunden,
> leider ohne Lösung. Ich denke die Antwort darauf würde
> auch mein Problem lösen. Ich muss zeigen, dass
> [mm]\overline{\IC}[/mm] (Riemannsche Fläche) als  
> [mm]\IR^2[/mm]-Mannigfaltigkeit orientierbar ist. Kann mir jemand
> helfen wie ich da vorgehen sollte. Vielen Dank im Voraus
> für Eure Hilfe.  

Der Begriff der Orientierbarkeit ist dir klar, oder? Du musst zeigen, dass es einen Atlas der 2-dim. reellen Mannigfaltigkeit gibt, für den die Jacobimatrix eines jeden Kartenwechsels positiv definit ist.

Tipp: Die Karten eines Atlanten der Riemannschen Fläche definieren dir automatisch einen Atlas der 2-dim. reellen Mannigfaltigkeit, indem du nach Real- und Imaginärteil trennst. Was folgt aus der Biholomorphie der (komplexen) Kartenwechsel?

  Viele Grüße
    Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de