www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Orthogonalbasis
Orthogonalbasis < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Sa 27.04.2013
Autor: rollroll

Aufgabe
Bestimme eine Orthogonalbasis von [mm] IR^3 [/mm] für die Bilinearform [mm] \beta, [/mm] die die Gram-Matrix  [mm] \pmat{ 3 &1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 2 }bezgl [/mm] der Standardbasis besitzt.

Also ich habe das allgemeine Gram-Schmidt-Verfahren angewandt und hab für die Basis B= ( [mm] \vektor{1 \\ 0 \\ 0}, \vektor{-1 \\ 3 \\ 0} [/mm] , [mm] \vektor{1 \\ -3 \\ 1} [/mm] ). Ist das so korrekt?

        
Bezug
Orthogonalbasis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:55 Sa 27.04.2013
Autor: schachuzipus

Rechnung?

Oder erwartest du allen Ernstes, dass jemand all dies nachrechnet, nur um deine kommentarlos hingeballerte Lösung zu überprüfen? Zumal deine Frage so nett formuliert ist?

Eine Erwartungshaltung ist das ... Zum Ko...
 

Bezug
        
Bezug
Orthogonalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 06:23 So 28.04.2013
Autor: angela.h.b.


> Bestimme eine Orthogonalbasis von [mm]IR^3[/mm] für die
> Bilinearform [mm]\beta,[/mm] die die Gram-Matrix [mm]\pmat{ 3 &1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 2 }bezgl[/mm]
> der Standardbasis besitzt.
> Also ich habe das allgemeine Gram-Schmidt-Verfahren
> angewandt und hab für die Basis B= ( [mm]\vektor{1 \\ 0 \\ 0}, \vektor{-1 \\ 3 \\ 0}[/mm]
> , [mm]\vektor{1 \\ -3 \\ 1}[/mm] ). Ist das so korrekt?

Hallo,

Deine Basis funktioniert.
Ist Dir klar, wie Du es selbst prüfen kannst?

LG Angela

Bezug
                
Bezug
Orthogonalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 So 28.04.2013
Autor: rollroll

Hallo,

nein, ich weiß nicht wie man das nachprüft, sondern nur dass man es nachprüfen kann...
Wäre nett, wenn du mir das erklären könntest.

Danke schonmal

Bezug
                        
Bezug
Orthogonalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 So 28.04.2013
Autor: angela.h.b.

Hallo,

Du hast ja die Matrix A,
und Du hast nun 3 Vektoren [mm] v_1, v_2, v_3, [/mm] von denen Du hoffst, daß sie eine Orthogonalbasis sind, ausgerechnet.

Willst Du prüfen, ob sie wirklich eine OGB sind, mußt Du nachschauen, ob sie paarweise orthogonal (bzgl.A) sind, ob also für [mm] i\not=j [/mm] gilt [mm] (v_i)^TAv_j=0. [/mm]

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de