www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Orthogonale Abbildung
Orthogonale Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Di 08.05.2012
Autor: Noob2332

Aufgabe
Sei l eine lineare Abbildung von S in sich,
S euklidicher Vektorraum mit Skalarprodukt <.,.> und Norm||x||= <.,.>
Zeigen Sie, dass l genau dann orthogonal ist, falls
|| l(x) || =|| x || für alle  x € S
x ist ein Vektor.

Was ich bisher aus der Aufgabenstellung entnehmen konnte...
l: S-->S . Mit dem euklidischen Vektorraum ist der [mm] R^3 [/mm] gemeint und die Norm
ist als das Skalarprodukt definiert.
Somit muss die Norm der Funktion l(x) auch ein Skalarprodukt sein, nur wie berechne ich denn das Skalarprodukt einer Funktion?
Das ist ja kein Vektor.
Bin bei der ganzen Aufgabenstellung ziemlich ratlos.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthogonale Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Di 08.05.2012
Autor: fred97


> Sei l eine lineare Abbildung von S in sich,
>  S euklidicher Vektorraum mit Skalarprodukt <.,.> und

> Norm||x||= <.,.>

Wohl eher: $ ||x||=<x,x>^{1/2}$


>  Zeigen Sie, dass l genau dann orthogonal ist, falls
>  || l(x) || =|| x || für alle  x € S
>  x ist ein Vektor.
>  Was ich bisher aus der Aufgabenstellung entnehmen
> konnte...
>  l: S-->S . Mit dem euklidischen Vektorraum ist der [mm]R^3[/mm]
> gemeint

Ich kann das der Aufgabenstellung nicht entnehmen !


>  und die Norm
> ist als das Skalarprodukt definiert.

Nein. Die Norm ist über das Skalarprodukt def.:  $ ||x||=<x,x>^{1/2}$


>  Somit muss die Norm der Funktion l(x) auch ein
> Skalarprodukt sein, nur wie berechne ich denn das
> Skalarprodukt einer Funktion?
>  Das ist ja kein Vektor.


l(x) ist ein Vektor in S, also $ ||l(x)||=<l(x),l(x)>^{1/2}$

>  Bin bei der ganzen Aufgabenstellung ziemlich ratlos.

Zeigen sollst Du:

   l ist eine orthogonale Abbildung  [mm] \gdw [/mm] || l(x) || =|| x || für alle  x € S


FRED

>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de